Kucharczyk, Roza and Wysocka-Kapcinska, Monika and Torocsik, Beata and Turiak, Lilla and Tsaprailis, George and David, Cynthia L. and Hunt, Andrea M. and Vekey, Karoly and Adam-Vizi, Vera and Chinopoulos, Christos (2013) The Suppressor of AAC2 Lethality SAL1 Modulates Sensitivity of Heterologously Expressed Artemia ADP/ ATP Carrier to Bongkrekate in Yeast. PloS one, 8 (9). e74187. ISSN 1932-6203
|
PDF
1MB |
Abstract
The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of DAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACDsal1D strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner.
Item Type: | Article |
---|---|
Subjects: | Q Science > QD Chemistry Q Science > QP Physiology Q Science > QR Microbiology |
Divisions: | Department of Genetics |
ID Code: | 577 |
Deposited By: | Dr hab Roza Kucharczyk |
Deposited On: | 18 Feb 2014 17:04 |
Last Modified: | 14 Oct 2014 11:03 |
Repository Staff Only: item control page