
 1 

Defining the impact on yeast ATP synthase of two pathogenic human 

mitochondrial DNA mutations, T9185C and T9191C. 

Anna Magdalena Kabala
1,2

, Jean-Paul Lasserre
2
, Sharon H. Ackerman

3
, Jean-Paul di Rago

2
, 

Roza Kucharczyk
1
* 

 

1
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland 

2
Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux 

Segalen, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France. 
3
Department of Biochemistry and Molecular Biology, Wayne State University School of 

Medicine, Detroit, Michigan, USA 

*To whom correspondence should be addressed. Email: roza@ibb.waw.pl, Phone: +48 

225921217, Fax: +48 226584636 

 

Abstract 

Mutations in the human mitochondrial ATP6 gene encoding ATP synthase subunit a/6 

(referred to as Atp6p in yeast) are at the base of neurodegenerative disorders like Neuropathy 

Ataxia Retinitis Pigmentosa (NARP), Leigh  syndrome (LS), Charcot-Marie-Tooth (CMT), 

and ataxia telangiectasia. In previous studies, using the yeast Saccharomyces cerevisiae as a 

model we were able to better define how several of these mutations impact the ATP synthase. 

Here we report the construction of yeast models of two other ATP6 pathogenic mutations, 

T9185C and T9191C. The first one was reported as conferring a mild, sometimes reversible, 

CMT clinical phenotype; the second one has been described in a patient presenting with 

severe LS. We found that an equivalent of the T9185C mutation partially impaired the 

functioning of yeast ATP synthase, with only a 30% deficit in mitochondrial ATP production. 

An equivalent of the mutation T9191C had much more severe effects, with a nearly complete 

block in yeast Atp6p assembly and an >95% drop in the rate of ATP synthesis. These findings 

provide a molecular basis for the relative severities of the diseases induced by T9185C and 

T9191C. 
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Introduction 

A quite large number of point mutations (sixteen) has been found in the mitochondrial 

ATP6 gene in patients presenting with various neurodegenerative disorders, Neurogenic 

Ataxia and Retinitis Pigmentosa (NARP), Leigh syndrome (LS), Leber's Hereditary Optic 

Neuropathy (LHON), Charcot-Marie-Tooth (CMT) or ataxia telangiectasia [1-8]. The ATP6 

gene encodes ATP synthase subunit a, which is referred to as Atp6p in yeast. The ATP 

synthase (also called complex V) synthesizes ATP from ADP and inorganic phosphate using 

the energy of the electrochemical proton gradient established by the mitochondrial electron 

transport chain (complexes I-IV) [9]. Atp6p is a key subunit of the FO proton-translocating 

domain of the ATP synthase. Proton movements mediated by Atp6p lead to the rotation of a 

transmembrane ring of Atp9p subunits (referred to as subunit c in humans) which ends up in 

conformational changes at the level of the catalytic sites in the F1 extra-membrane domain of 

the enzyme that favor the synthesis ATP and its release into the mitochondrial matrix [10, 11]. 

We previously constructed yeast models of the pathogenic ATP6 mutations T8993G [12], 

T8993C [13], T9176G [14], T9176C [15] and T8851C [16]. The effects of these mutations on 

yeast ATP synthase correlated well with those observed in humans, which reflects the high 

level of evolutionary conservation within the regions of Atp6p affected by these mutations.  

Two other pathogenic mutations at the focus of the present study were described at positions 

9185 (T9185C) and 9191 (T9191C) of ATP6 [17]. The first one changes a leucine into proline 

at position 220 near the carboxyl terminus of the protein. It was found in thirty-four patients 

from eight independent families suffering from LS, NARP, CMT or spinocerebellar ataxia 

syndromes [3, 17-21]. In all cases the disease was maternally inherited, with a relatively mild, 

sometimes reversible, clinical phenotype and occurred at a minimum of 85% heteroplasmy. 

Mitochondria from patients's cells (muscle or skin fibroblasts) showed normal complexes I-IV 

activities [3, 21] and only a slightly reduced ATPase activity [18, 20]. The second mutation, 
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T9191C, was found in a patient presenting with very severe LS [17]. It changes a leucine to 

proline at position 222 of the human homolog of yeast Atp6p. This mutation causes a 

substantial (50%) reduction in mitochondrial ATPase activity and a lower respiration rate 

(60% vs. control) [17]. We report here yeast models of the mutations T9185C and T9191C 

that help to better define how they impact the ATP synthase. 
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 Materials and Methods 

2.1. Construction of yeast atp6-S250P and atp6-L252P mutants. The strains used in the study 

are listed in Table 1. Using the QuikChange XL Site-directed Mutagenesis Kit of Stratagene, 

we changed the serine TCA codon at position 250 in the yeast ATP6 gene into proline CCA 

codon, with primers 5’ 

GTCTGGGCTATTTTAACAGCACCATATTTAAAAGATGCAGTATACTTACAT 

and 5’ ATGTAAGTATACTGCATCTTTTAAATATGGTGCTGTTAAAATAGCCCAGAC 

and the leucine TTA codon at position 252 into proline CCA codon, with primers 5’ 

GTCTGGGCTATTTTAACAGCATCATATCCAAAAGATGCAGTATACTTACAT 

and 5’ ATGTAAGTATACTGCATCTTTTGGATATGATGCTGTTAAAATAGCCCAGAC 

(in bold the mutator codon). The mutagenesis was performed on an EcoRI–BamHI fragment 

containing the last 38 codons of ATP6 cloned in pUC19 (plasmid pSDC9) [12]. The mutated 

fragment was liberated by restriction with EcoRI and SapI and ligated with pSDC14 [12] cut 

with the same enzymes to reconstruct a whole ATP6 gene with the S250P or L252P 

mutations. The resulting plasmids (pRK37 and pRK38, respectively) also contain the yeast 

mitochondrial COX2 gene as a marker for mitochondrial transformation. The plasmids were 

introduced by co-transformation with the nuclear selectable LEU2 plasmid Yep351 into the 

rho
0
 strain DFS160 by microprojectile bombardment using a biolistic PDS-1000/He particle 

delivery system (Bio-Rad) as described [22]. Mitochondrial transformants (synthetic AKY13 

and AKY14 respectively) were identified among the Leu+ nuclear transformants by their 

ability to produce respiring clones when mated to the nonrespiring NB40-3C strain bearing a 

deletion in the mitochondrial COX2 gene. One AKY13 and AKY14 clone was crossed to the 

atp6::ARG8m deletion strain MR10 [23] for the production of clones (called AKY5 and 

RKY66) harboring the MR10 nucleus and where the ARG8m ORF [24] had been replaced by 

recombination with the mutated atp6-S250P or atp6-L252P genes. The AKY5 clone was 
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identified by its inability to grow in the absence of an external source of arginine and the 

ability to grow on respiratory medium. The RKY66 clone was identified by its inability to 

grow in the absence of an external source of arginine and the ability to grow on respiratory 

medium when crossed with the SDC30 strain bearing in the mitochondrial DNA the wild type 

copy of ATP6 gene. Sequencing of the mutated atp6 locus in AKY5 and RKY66 revealed no 

other changes than S250P or L252P, respectively. 

2.2. Measurement of respiration and ATP synthesis/hydrolysis activities in whole 

mitochondria. For these assays, mitochondria were prepared by the enzymatic method of [25]. 

The rates of ATP synthesis were determined as described in [23]. For respiration ATP 

synthesis and transmembrane potential (ΔΨ) measurements, freshly prepared mitochondria 

were diluted to 0.15 mg/ml in the reaction medium thermostated at 28 °C and containing 10 

mM Tris-maleate (pH 6.8), 0.65 M sorbitol, 0.3 mM EGTA, and 3 mM potassium phosphate. 

Oxygen consumption rates were measured using a Clarke electrode and a OXM204 oxymeter 

from Heito (France) as described [26]. The different respiration states were measured after 

consecutive additions of 4 mM NADH for State 2, 150 µM ADP for State 3 and State 4, 4µM 

carbonyl cyanide m-chlorophenylhydrazone (CCCP) for uncoupled respiration and finally 

12.5 mM ascorbate (Asc), 1.4 mM N,N,N,N,-tetramethyl-p-phenylenediamine (TMPD) for 

Complex IV respiration activity. The rates of ATP synthesis were determined in the same 

condition using 750 µM ADP. Aliquots were withdrawn from the oxygraph cuvette every 15 

seconds and reaction was stopped by 3.5% (w/v) perchloric acid, 12.5 mM EDTA. Samples 

were then neutralized to pH 6.5 by addition of KOH, 0.3 M MOPS. ATP was quantified by 

luciferin/luciferase assay (ATPLite kit from Perkin Elmer) on a LKB bioluminometer. 

Participation of the F1FO-ATP synthase to ATP production was assessed by oligomycin 

addition (3 μg/ml). Variations in transmembrane potential (ΔΨ) were evaluated as in [27] by 

monitoring the quenching of rhodamine 123 fluorescence (0.5 μM) using a λexc of 485 nm and 
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a λem of 533 nm using a FLX Spectrofluorimeter (SAFAS, Monaco) under constant stirring. 

Transmembrane potential was generated by addition of ethanol [1% (v/v) final concentration]. 

ATP synthesis (state 3 of respiration) was initiated by addition of 50 µM ADP. When State 4 

was reached, respiratory was inhibited by adding 0.3 mM KCN in order to measure the ΔΨ 

produced by the hydrolysis of the synthetized ATP. ΔΨ was collapsed by adding 4 µM 

CCCP. The specific ATPase activity at pH 8.4 of non-osmotically protected mitochondria was 

measured as described in [28]. 

2.3. Miscellaneous procedures. Determination of 
-
/

0
 cells in yeast cultures, SDS–PAGE and 

BN–PAGE, western blotting, pulse labeling of mtDNA encoded proteins were performed as 

described in [23]. 
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Results 

3.1. Respiratory growth and genetic stability of yeast mutants atp6-S250P and atp6-L252P. 

The leucine residues 220 and 222 of the human homolog of yeast Atp6p that are modified by 

the T9185C and T9191C mutations correspond respectively to serine 250 and leucine 252 of 

Atp6p [29]. The TCA and TTA codons specifying these residues were converted into proline 

CCA codon (see Materials and Methods). Yeast atp6-S250P clones grew well on non-

fermentable carbon sources (like glycerol) whereas atp6-L252P ones failed to grow in these 

conditions, as shown by the drop tests in Fig.1. The few growing colonies in the atp6-L252P 

drops presumably arose from genetic suppressors restoring mitochondrial function.  

Even though the mutant atp6-S250P had a normal respiratory growth this does not 

necessarily mean that mitochondrial ATP synthesis was not compromised. Indeed as 

previously shown through the analysis of numerous yeast ATP synthase mutants, the activity 

of this enzyme needs to be decreased by at least 80% to see an obvious respiratory growth 

defect, which indicates that ATP synthase is far from limiting for the proliferation of yeast 

cells producing ATP by oxidative phosphorylation [30, 31]. However, when the rate of 

mitochondrial ATP production is diminished cells become more sensitive to chemical 

inhibition of ATP synthase with oligomycin [31], a compound that is presumed to target the 

FO because mutations in Atp9p and Atp6p can confer an increased resistance to it [32, 33].  

Thus, the higher in vivo sensitivity to oligomycin of mutants in which ATP synthase is 

partially compromised is due to the fact that less of the drug is required to reach the 20% 

oxidative phosphorylation threshold under which the production of ATP becomes limiting for 

growth [31]. We therefore tested the in vivo sensitivity to oligomycin of the mutant atp6-

S250P. As shown in Fig.1, in the presence of 0.25g/ml oligomycin the atp6-S250P mutant 

stopped growing on glycerol whereas wild type yeast (WT, strain MR6) was unaffected. This 

finding indicated that the S250P change in Atp6p was not without any deleterious 
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consequence on the ATP synthase, which was confirmed by in vitro experiments on isolated 

mitochondria as described below. It is to be noted that the few revertants of the atp6-L252P 

mutant displayed a normal sensitivity to oligomycin, indicating that ATP synthase function 

was largely, if not totally, restored in these clones. 

In yeast, defects in ATP synthase often increase the production of 
-
/

0
 petites issued from 

large deletions in the mtDNA [34, 35].  The atp6-S250P mutant never produced more than 

5% 
-
/

0
 cells like the WT. The atp6-L252P mutant had a higher but still moderate propensity 

(36%) to produce petites showing that its severe respiratory growth deficiency was not due, at 

least solely, to a failure in mtDNA maintenance. Full respiratory competence was restored in 

atp6-L252P cells that contained a complete (+) mitochondrial genome by crossing with 

SDC30, a synthetic 
-
 strain whose mitochondria contain only the wild type ATP6 gene. This 

result proved that the L252P change in Atp6p was responsible for the observed respiratory 

growth phenotype of the atp6-L252 mutant. 

 

3.2. Consequences of the atp6-S250P and atp6-L252P mutations on various activities related 

to respiration and oxidative phosphorylation. 

3.2.1. Mitochondrial oxygen consumption. We first measured oxygen consumption in isolated 

mitochondria using NADH as an electron donor, at state 3 (i.e. in the presence of ADP, 

phosphorylating conditions), state 4 (i.e. without addition of ADP, basal respiration) and in 

the presence of the membrane potential uncoupler CCCP (i.e. conditions at which respiration 

is maximal). We also used ascorbate/TMPD to deliver electrons directly at the level of 

complex IV, the last complex of the electron transport chain. The atp6-S250P mutation had a 

minor impact in all tested conditions, with only a 10-15% decrease at state 3 with respect to 

WT (Table 2). Much more important oxygen consumption deficits (67-85%) were observed in 

atp6-L252P mitochondria. A respiratory defect, especially at the level of complex IV, is a 
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common property of yeast ATP synthase mutants [23, 36]. Not surprisingly, a pronounced 

decrease in the content of complex IV was observed also in the mutant atp6-L252P whereas 

the abundance of this complex was almost normal in the atp6-S250P mutant, as revealed by 

BN-PAGE analysis of mitochondrial protein digitonin-extracts (Fig. 2A). 

3.2.2. Mitochondrial ATP synthesis/hydrolysis. We analyzed further the influence of the atp6-

S250P and atp6-L252P mutations by measuring the rate of ATP synthesis in isolated 

mitochondria, which was done in the presence of a large excess of external ADP to keep 

constant a minimal intra-mitochondrial concentration of ATP. An ~30% decrease in ATP 

synthesis rate was observed in atp6-S250P mitochondria while this activity was less than 10% 

that of WT (Table 2) in the atp6-L252P mutant. As the rates of oxygen consumption were 

reduced in similar proportions (see above), it can be inferred that the efficiency of oxidative 

phosphorylation (i.e. the number of ATP molecules formed per electron transferred to 

oxygen) was largely unaffected by both mutations.   

We next measured the rate of ATP hydrolysis by non-osmotically protected mitochondria 

buffered at pH 8.4 and in the presence of saturating amounts of ATP, conditions under which 

this activity is maximal. Both mutants had an ATPase activity similar to that of the WT (Table 

2).  Of particular interest, oligomycin inhibited the ATPase activity by 85% in the WT and 

atp6-S250P samples, but only by 20% in the atp6-L252P mutant.  

c) ATP-driven translocation of protons across the mitochondrial inner membrane – 

We next measured the proton-pumping activity coupled to F1-mediated ATP hydrolysis in 

samples of whole mitochondria, using a fluorescent dye, Rhodamine 123, to monitor changes 

in the membrane potential () (Figure 3). This dye accumulates inside the mitochondrial 

matrix, where its fluorescence is quenched,in response to an established  [27]. Before 

testing for ATP-driven proton translocation, the mitochondria were energized with ethanol in 

order to elicit release of the natural inhibitory peptide (IF1) that binds F1FO in the resting state 
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and prevents ATP hydrolysis [37]. The imposed  was then collapsed with KCN and less 

than 2 minutes later ATP was added, i.e. well before rebinding of IF1 to F1 could occur. The 

added ATP is counter-exchanged for ADP in the matrix compartment and is then hydrolyzed 

by the ATP synthase  coupled to the pumping of protons out of the mitochondrial matrix 

through the FO. Comparable levels of proton pumping coupled to ATP hydrolysis was 

manifested in the WT and atp6-S250P mitochondria by a large and sustained fluorescence 

quenching that was fully reversed upon addition of oligomycin. It is to be noted that the 

concentration of oligomycin used in these assays is in far excess of the one that is minimally 

required to inhibit all ATP synthase complexes in wild type mitochondria, which explains that 

the ATP-induced  in mutant and wild type mitochondria showed the same sensitivity to 

oligomycin. In the growth tests of Figure 1 showing that the atp6-S250P mutant has an 

increased in vivo sensitivity to oligomycin, the drug was used at a suboptimal concentration 

not sufficient to inhibit the respiratory growth of wild type yeast. Mitochondria from the 

atp6-L252P mutant produced only a small change in fluorescence upon addition of ATP and 

this change was almost insensitive to oligomycin. 

3.2.3. Assembly/stability of the ATP synthase in the atp6-S250P and atp6-L252P mutants. We 

finally investigated the influence of the atp6-S250P and atp6-L252P mutations on ATP 

synthase assembly/stability, by BN-PAGE analysis of mitochondrial proteins extracted with 

digitonin (Fig.2A). The BN gels were first stained with Coomassie brilliant blue. WT and 

atp6-S250P samples showed similar amounts of fully assembled ATP synthase dimers and 

monomers, whereas these complexes were barely detectable in atp6-L252P samples. The 

protein complexes were further analyzed in-gel via their ATPase activity. Two major ATPase 

signals corresponding to ATP synthase dimers and monomers were detected for both the WT 

and atp6-S250P mutant. Similar signals were seen also but with a much weaker intensity for 

the atp6-L252P mutant. Of particular interest this mutant displayed a strong lower-size 
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ATPase signal corresponding to free F1. Finally, the protein complexes were transferred to a 

nitrocellulose membrane and decorated with antibodies against Atp6p, which further 

illustrated the failure of the atp6-L252P mutant to assemble correctly the ATP synthase.  

In SDS gels of total mitochondrial protein extracts, Atp6p was barely detected in the atp6-

L252P mutant whereas the steady state levels of this protein were normal in the atp6-S250P 

mutant (Fig.2B). Pulse labeling of the proteins encoded by the mitochondrial genome 

revealed that Atp6p was synthesized efficiently in both mutants (Fig.4). It can be inferred that 

the nearly absence of Atp6p in the mutant atp6-L252P is caused by a high susceptibility of 

this protein to degradation. There is a visible difference in the migration of Atp6p in both 

mutants where this protein appears to be larger than in the WT. It seems unlikely that this 

effect is due to a block in the processing of the leader peptide of Atp6p, a stretch of 10 amino 

acids that is removed during assembly of the protein [38-41]. Indeed, if this were the case, 

both mutant proteins would have the same migration rate, which is not observed. Atp6p like 

other very hydrophobic proteins has aberrant electrophoretic properties; while it migrates as 

an 21 KDa protein it has a predicted molecular weight of about 30 KDa. The differences in 

the migration of Atp6p in the atp6-S250P and atp6-L252P mutants most likely result from the 

structural changes induced by the mutations themselves. That a single amino acid replacement 

may change the electrophoretic properties of a protein has been observed on many occasions 

(see Figure 3 in [42] for an example). 
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Discussion 

We have investigated the consequences on yeast ATP synthase of two mutations of the 

human mitochondrial ATP6 gene, T9185C and T9191C, that were identified in patients 

suffering from neurological disorders [17]. Both mutations change a leucine residue into 

proline near the C-terminal end of the human homolog of yeast Atp6p, at positions 220 and 

222 respectively. These leucine residues show moderate evolutionary conservation as 

manifested by the presence of different amino acids at corresponding positions in other 

species (like Ser, Val, Ile, and Gly at position 220; Ala, Met, Ser and Ile at position 222) (see 

[29] for amino acids alignments). In current folding models [29], these residues belong to the 

last -helical transmembrane segment (helix V) of Atp6p. This segment would contact the 

Atp9p-ring and is presumed to play a key role in proton transport through the FO [43]. Nearby 

the leucine 220 and 222 of the human homolog of yeast Atp6p are two residues within helix 

V, leucine 217 and tyrosine 221, that have possible crucial importance as indicated by their 

strict evolutionary conservation [29]. It is therefore not very surprising that replacing leucine 

220 or 222 by an -helix breaker residue like proline is detrimental to human health. 

Consistent with this, some of the most severe ATP6 pathogenic mutations were located at 

position 217 [44]. 

Mutations in yeast Atp6p equivalent to T9185C (atp6-S250P) and T9191C (atp6-

L252P) lead to 30% and 90% drops in the rate of mitochondrial ATP synthesis respectively 

(Table 2). The atp6-S250P mutation had no visible influence on yeast ATP synthase 

assembly/stability (Fig.2A), indicating a partial functional impairment of the enzyme. There 

was no evidence of proton leakage across the mitochondrial inner membrane, and the 

efficiency of oxidative phosphorylation in atp6-S250P mitochondria in terms of ATP 

molecules synthesized per electron transferred to oxygen was almost normal. The main effect 

of this mutation is thus a partial functional impairment of FO. Since the leucine 220 (serine 
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250 in yeast) is predicted to be vey close to the matrix side of the membrane, a proline in this 

position could possibly create some local structural modification resulting in a less efficient 

exit of protons from the FO. Alternatively, the mutation might induce long-range effects 

impacting the entry of protons from the intermembrane space or their exchange with the c-

ring near the middle of the membrane. Nearly identical defects, i.e. a 30% deficit in ATP 

production with no visible impact on assembly/stability of ATP synthase, were found in a 

yeast model of the T9176C mutation (amino acid position 217 in humans, 247 in yeast) that 

gives also relatively mild clinical phenotypes [31]. These findings reveal that a deficit in 

mitochondrial ATP production so modest as 30% is sufficient to impact human health. 

The >95% drop in ATP synthesis in the atp6-L252P mutant is caused by defects in 

ATP synthase assembly. Only trace amounts of fully assembled F1FO complexes were 

detected by BN-PAGE analysis in this mutant (Fig.2A). The mutated Atp6p was synthesized 

efficiently (Fig.3) but failed to accumulate at the steady state (Fig.2B) indicating that it is 

rapidly eliminated from cells after synthesis [9, 45]. Yeast Atp6p is typically degraded when 

it cannot assemble. It is presumed to insert in a late step after assembly of the other ATP 

synthase subunits [23, 45]. When subjected to BN-PAGE analysis the Atp6p-less intermediate 

easily dissociates into several subcomplexes, among which free F1 particles [23] (this study, 

Fig.2A). The rapid degradation of neo-synthesized Atp6p and the presence of substantial 

amounts of free F1 in the atp6-L252P mutant are strong indications that the mutated protein is 

unable to be stably incorporated into ATP synthase. As the region of Atp6p affected by the 

L252P change is presumed to contact the c-ring, it is possible that the mutated protein cannot 

interact properly with the c-ring. Alternatively, the mutation may prevent insertion of Atp6p 

within the membrane or acquisition of a folded structure required to interact with the c-ring. 

In this respect, it is to be noted that the C-terminal region of Atp6p seems to be critical for 

interaction with Atp10p [46], an accessory protein that helps insertion of Atp6p into ATP 
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synthase either directly or by protecting it against proteolytic degradation until it is assembled 

[47]. Nearly identical defects were found in a yeast model of the pathogenic mutation T9176G 

mutation, which changes the highly conserved leucine 217 (247 in yeast) into arginine [14]. 

This mutation results in very severe clinical phenotypes too similar to those of the patient with 

the T9191C mutation [44]. Since this mutation was found in only one patient, its pathogenesis 

remained uncertain. Our study provides strong evidence that this mutation was actually 

responsible for the clinical phenotypes displayed by this patient. 
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Table 1.   Genotypes and sources of yeast strains 

 

Strain Nuclear genotype mtDNA Source 

DFS160 MATa leu2 ura3-52 ade2-101 arg8:: URA3 kar1-1 
o [24] 

NB40-3C MATa lys2 leu2-3,112 ura3-52 his3HinDIII 

arg8::hisG 


+
 cox2-62 [24] 

MR6 MATa  ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 

CAN1 arg8::hisG 


+
  [23] 

MR10 MATa  ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 

CAN1 arg8::hisG 
 

+ 
atp6::ARG8

m [23] 

SDC30 MATa leu2 ura3-52 ade2-101 arg8: URA3 kar1-1 
- 
ATP6 [23] 

AKY13 MAT leu2 ura3-52 ade2-101 arg8URA3 kar1-1 
- 
atp6-S250P This study 

AKY14 MAT leu2 ura3-52 ade2-101 arg8URA3 kar1-1 
- 
atp6-L252P This study  

AKY5 MATa  ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 

CAN1 arg8::hisG 


+ 

atp6 S250P This study 

This study 

RKY66 MATa  ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 

CAN1 arg8::hisG 


- 
atp6-L252P This study 

This study 
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Table 2. Influence of the atp6-S250P and atp6-L252P mutations on yeast mitochondrial respiration, 

and ATP synthesis and hydrolysis activities. 

Mitochondria were isolated from wild type strain MR6 (wt) and mutants atp6-S250P and atp6-L252P 

grown for 5-6 generations in YPGALA medium (rich galactose) at 28°C. Reaction mixes for assays 

contained 0.15 mg/ml protein, 4 mM NADH, 150 (for respiration asays) or 750 (for ATP 

synthesis)M ADP, 12.5 mM ascorbate (Asc), 1.4 mM N,N,N,N,-tetramethyl-p-phenylenediamine 

(TMPD), 4 M CCCP, 3 g/ml oligomycin (oligo). The two MR6 cultures contained 2-5% of 
-
/° 

cells, while those of atp6-S250P and atp6-L252P contained 5% and 36% 
-
/° cells. The values 

reported are averages of triplicate assays ± standard deviation. Respiratory and ATP synthesis 

activities were measured using freshly isolated, osmotically protected mitochondria buffered at pH 

6.8. For the ATPase assays, mitochondria kept at –80°C were thawed and the reaction performed in 

absence of osmotic protection and at pH 8.4.  
 

Strain 

Respiration rates 

nmol O.min-1.mg-1 

ATP synthesis rate 

nmol Pi.min-1.mg-1 

ATPase activity 

µmol Pi.min-1.mg-1 

NADH 

NADH 

+ADP 

NADH 

+CCCP 

Asc/TMPD 

+ CCCP 

- oligo + oligo - oligo +oligo 

MR6 470 898124 1437 2540 1112185 5225 4.1 ± 1.6 0.48 ± 0.27 

AKY5 420 77461 129 2606185 77937 5 4.5 ± 2.0 0.71 ± 0.37 

RKY66 1541 1807 3567 55933 711 293 5.1 ± 0.3 4.1 ± 1.9 
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LEGENDS TO FIGURES 

 

Fig.1. Respiratory growth of atp6-S250P and atp6-L252P mutants. Freshly grown cells of 

wild type yeast (MR6) and the atp6 mutants were serially diluted and 5 µl of each dilution 

were spotted onto rich glucose, rich glycerol and rich glycerol + oligomycin. The plates were 

incubated at 28°C and photographed after the indicated number of days.  

 

Fig.2. ATP synthase and complex IV in the mutants atp6-S250P and atp6-L252P. A: BN-

PAGE analysis of mitochondrial protein digitonin-extracts (50 g). The proteins were, as 

indicated, stained in-gel by Coomassie brilliant blue and their ATPase activity, and by 

Western blot with antibodies against Atp6 and Cox2. Fully assembled, dimeric (V2) and 

monomeric (V1), F1FO-ATP synthase complexes accumulate normally in the atp6-250P 

mutant while only trace amounts are detected in the atp6-L252P mutant. This mutant 

accumulates large amounts of free F1 particles. The anti-cox2 Western reveals that the atp6-

L252P mutant has low contents in cytochrome oxidase (complex IV) while the levels of this 

enzyme in the atp6-S250P mutant are similar to those seen in the WT. B: SDS-PAGE of total 

mitochondrial proteins (20 g). After migration the proteins were transferred to a 

nitrocellulose membrane and probed with antibodies against porin and Atp6p.  

 

Fig.3. ATP-driven energization of mitochondria. Energization of the mitochondrial inner 

membrane in  intact mitochondria from wild type, atp6-S250P and atp6-L252P mutants 

grown in rich galactose at 28°C was monitored by Rhodamine 123 (Rh-123) fluorescence 

quenching. The additions were 0.5 g/ml Rhodamine 123, 0.15 mg/ml mitochondrial proteins 

(Mito), 10 µl of ethanol (EtOH), 0.2 mM potassium cyanide (KCN), 1 mM ATP, 6 µg/ml 

oligomycin (oligo) and 3 µM CCCP.  
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Fig. 4. In vivo labeling of mitochondrial translation products. Proteins encoded by mtDNA 

were labeled in whole cells from wild type (MR6) and strains bearing atp6-S250P and atp6-

L252P mutations with [35S]-(methionine+cysteine) for 20 min in the presence of 

cycloheximide to inhibit cytosolic protein synthesis. After the labeling reactions, total protein 

extracts were prepared from the cells (0.2 OD at 650 nm) and separated by SDS-PAGE on a 

16.5% polyacrylamide gel (left). For a better resolution of Cox3p and Atp6p, a 12% 

polyacrylamide gel containing 6 M Urea was used (right). The gels were dried and analyzed 

with a PhosphorImager. 
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