

Fig. 1. APE1-catalyzed deoxyuridine endonuclease activity. (A) Time- and condition-dependent cleavage of a DNA duplex containing a single uracil residue by APE1. 10 nM of the 3'-[<sup>32</sup>P]-labelled 30-mer U•G duplex (dU-RT sequence context) was incubated for 15-180 min at 37°C with 10 nM APE1 under the NIR and BER conditions. Lane 1, control non-treated U•G; lane 2, as 1 but incubated with 40 nM hTDG for 20 min under the BER+Mg<sup>2+</sup> reaction conditions and then treated with 10% piperidine for 15 min to cleave the resulting AP sites. Lanes 3, 5, 7, 9, 11 and 13, as 1 but incubated with APE1 under the BER+Mg<sup>2+</sup> conditions. Lanes 4, 6, 8, 10,12 and 14, as 1 but incubated with APE1 under the NIR conditions. The arrows denote the position of the intact 31mer substrate, the position of the 21-mer product of APE1-NIR activity, and the position of the 20-mer product of DNA glycosylase activity. (B) Action of various NIR endonucleases and APE1-D308A mutant towards the U•G duplex. 10 nM of the 3'- $[^{32}P]$ -labelled 30 mer U•G, and  $\alpha$ dA•T oligonucleotide duplexes (dU-RT sequence context) were incubated with either 10 nM wild-type (WT) APE1, or 10 nM APE1-D308A under the NIR conditions or with a limited amount of Nfo and Apn1 in their respective reaction buffers for 30 min and 2 h at 37°C. Lane 1, non-treated  $\alpha$ dA•T; lane 2, as 1 but WT APE1 for 10 min; lane 3, as 1 but APE1D308A for 10 min. Lane 4, U•G incubated with 40 nM hTDG for 30 min and then with 10 nM APE1 for 30 min under the BER+Mg<sup>2+</sup> conditions; lane 5, non-treated U•G; lane 6, as 5 but WT APE1 for 2 h; lane 7, as 5 but APE1-D308A for 2 h; Lane 8, non-treated adA•T; lane 9, as 8 but 1 nM Nfo for 30 min; lane 10, as 8 but 1 nM Apn1 for 30 min; lane 11, as 8 but 4 nM Apn1 for 30 min; lane 12, as 8 but WT APE1 for 10 min; lane 13, as 4; lane 14, non-treated U•G; lane 15, as 14 but 1 nM Nfo for 2 h; lane 16, as 14 but 1 nM Apn1 for 2 h; lane 17, as 14 but 4 nM Apn1 for 2h; lane 18, as 14 but WT APE1 for 2 h. The arrows denote the position of the non-cleaved 31-mer substrate, the position of the 21-mer APE1-NIR product, and the position of the 20-mer DNA glycosylase product. For details, see Materials and Methods.



**Fig. 2.** MALDI-TOF MS analysis of the reaction products generated by the incubation of a 17-mer oligonucleotide duplex containing a single dU residue with APE1 (**A**) and with TDG and APE1 (**B**). Typically, 10 pmol of the 17-mer U•G duplex (dU-RT17 sequence context) was incubated with either 10 nM APE1 under NIR conditions at 37°C for 17 h or with 40 nM hTDG at 37°C for 30 min and then with 10 nM APE1 at 37°C for 30 min under the BER+Mg<sup>2+</sup> reaction conditions. For details, see Materials and Methods.



**Fig. 3.** *In vitro* reconstitution of APE1-catalyzed dU-endonuclease activities. (**A**) Action of APE1 on a sodium bisulfite-treated DNA duplex. NaHSO<sub>3</sub>-treated and  $3'-[^{32}P]$ -labelled 31-mer C•G duplex was incubated with either hTDG for 30 min and then with APE1 for 30 min at 37°C under the BER+Mg<sup>2+</sup> condition, or with 10 nM APE1 at 37°C for varying time under the NIR conditions. Lane 1, control NaHSO<sub>3</sub>-treated C•G duplex; lane 2, as 1 but hTDG/APE1; lane 3, as 1 but APE1 alone for 0.5 h; lanes 4–6, as 3 but 1 h, 2 h, and 3 h, respectively. For details, see Materials and Methods. (**B**) *In vitro* reconstitution of the NIR pathway for uracil residues. 10 nM of the non-labelled 40-mer U•G oligonucleotide duplex (DL10 sequence context) was incubated for 1 h at 37°C in the presence of DNA repair proteins, non-labelled dNTPs, and [ $\alpha^{-32}$ P]dCTP. Lane 1, U•G incubated under the BER conditions with all proteins except APE1; lane 2, as 1 but except FEN1; lane 3, as 1 but except POL $\beta$ ; lane 4, as 1 but except DNA ligase; lane 5, in the presence of all proteins; lanes 6-11, U•G incubated under the NIR conditions with the DNA repair proteins; lane 6, except APE1 and FEN1; lane 7, except APE1; lane 8, except FEN1; lane 9, except POL $\beta$ ; lane 10, except DNA ligase; lane 11, in the presence of all proteins; lane 12, 40-mer size marker. All incubations were performed in the presence of 1 unit of uracil-DNA glycosylase inhibitor (UGI). For details, see Materials and Methods.



**Fig. 4**. Characterization of DNA substrate specificity of Mth212. 10 nM of the 3'-[<sup>32</sup>P]-labelled 30-mer oligonucleotide duplexes (dU-RT sequence context) THF•T, U•G,  $\alpha$ dA•T and 5ohC•G were incubated either with Mth212 for 15 min at 55°C, or 1 nM Nfo for 5 min at 37°C, under the respective reaction conditions. (**A**) Action of Mth212 on AP sites and uracil residues. Lane 1, THF•T incubated 2.5h at 55°C; lane 2, non-treated THF•T; lanes 3-7, as 2 but 0.5, 2, 4, 10 and 20 nM Mth212; lane 8, 1 nM Nfo; lane 9, U•G incubated 2.5h at 55°C; lane 10, non-treated U•G; lanes 11-15, as 10 but 0.5, 2, 4, 10 and 20 nM Mth212; lane 16, 1 nM Nfo. (**B**) Action of Mth212 on  $\alpha$ dA and 5ohC residues. Lane 1, non-treated  $\alpha$ dA•T; lanes 2-6, as 1 but 2, 4, 10, 20 and 100 nM Mth212; lane 7, 1 nM Nfo; lane 8, 5ohC•G incubated 2.5h at 55°C; lane 9, non-treated 5ohC•G; lanes 10-14, as 9 but 2, 4, 10, 20 and 100 nM Mth212; lane 15, 1 nM Nfo. The arrow "s" denotes the position of the non-cleaved 31-mer substrate, the arrow "p" denotes the position of the 21-mer cleavage product. For details, see Materials and Methods.

## Supporting Information Supporting Information Figure Legends



**Supporting Information Figure S1**. The influence of the nearest neighbouring bases to uracil residue on APE1-catalyzed DNA uridine endonuclease activity. 10 nM of 3'-[<sup>32</sup>P]-labelled 20 mer oligonucleotide duplex (dU-RT20 sequence context, Table 1) containing a single dU in sequence contexts AUG, AUA, AUC, AUT, CUG, GUG, TUG was incubated for 2h at 37°C in the presence of 10 nM APE1 under NIR condition. All determinations were performed at least three time. For details see Materials and Methods.



**Supporting Information Figure S2.** Action of APE1 towards deoxyuridine residues when present in varied sequence contexts. Lane 1, non-treated control 10 nM of  $3'-[^{32}P]$ -labelled U•G duplex with the sequence context referred as dU-SP AU(11)G; lane 2, as1 but 50 nM hTDG for 30 min at 37°C and then 10 nM APE1 for 15 min at 37°C; lane 3, as 1 but 10 nM APE1 for 2h at 37°C; lane 4, non-treated control 10 nM of  $3'-[^{32}P]$ -labelled U•G duplex with the sequence context referred as dU-SP AU(21)G; lanes 5, as 4 but TDG + APE1; lane 6, as 4 but 10 nM APE1 for 2h at 37°C. The arrows denotes the position of the non-cleaved 31-mer DNA substrate, the position of the 21-mer NIR cleavage product and the position of the 20-mer and 10-mer BER cleavage product. For details see Materials and Methods.



**Supporting Information Figure S3**. The influence of the base opposite to dU residue on APE1catalyzed DNA uridine endonuclease activity. 10 nM of  $3'-[^{32}P]$ -labelled 20 mer oligonucleotide duplex (dU-RT20 sequence context, Table 1) containing a single uracil residue opposite to G, A, C or T was incubated for 2h at 37°C in the presence of 10 nM APE1 under NIR condition. All determinations were performed at least three time. For details see Materials and Methods.



**Supporting Information Figure S4**. Action of APE1 and Mth212 towards 10 nM of 3'-[<sup>32</sup>P]-labelled DNA duplexes containing single 80xoG residue. Lane 1, control non-treated 22 mer 80xoG•C; lane 2, as1 but 25 nM hOGG1 for 30 min at 37°C and then 10 nM APE1 for 15 min, at 37°C; lane 3, as 1 but 10 nM APE1 for 1h at 37°C; lane 4, control non-treated 30 mer 80xoG•C (dU-RT context); lanes 5, as 4 but OGG1 and APE1; lane 6, as 4 but APE1; lane 7, control 40 mer 80xoG•C (dU-DL context); lane 8, as 7 but 20 nM Mth212; lane 9, 40 nM Mth212; lane 10, 60 nM Mth212; lanes 11, hOGG1 and APE1. The arrow "s" denotes the position of the non-cleaved 31 mer DNA substrate, the arrow "p" denotes the position of the 21-mer cleavage product. For details see Materials and Methods.