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Abstract 

tRNA synthesis by yeast RNA polymerase III (Pol III) is down-regulated under growth-limiting 

conditions. This control is mediated by Maf1, a global negative regulator of Pol III transcription. 

Conserved from yeast to man, Maf1 was originally discovered in Saccharomyces cerevisiae by a 

genetic approach. Details regarding the molecular basis of Pol III repression by Maf1 are now 

emerging from the recently reported structural and biochemical data on Pol III and Maf1. The 

phosphorylation status of Maf1 determines its nuclear localization and interaction  with the Pol III 

complex and several Maf1 kinases have been identified to be  involved in Pol III control. Moreover, 

Maf1  indirectly affects tRNA maturation and decay. Here I discuss the current understanding of the 

mechanisms that oversee the Maf1-mediated regulation of Pol III activity and the role of Maf1 in the 

control of tRNA biosynthesis in yeast.  
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Introduction 

The existence of three RNA polymerases (Pol) is well documented for all investigated 

eukaryotes. Pol I synthesizes ribosomal RNA (rRNA), Pol II produces mainly mRNAs, and Pol III 

generates tRNAs, 5S rRNA and other small noncoding RNAs. Recent studies reveal substantial 

conservation between the transcription initiation machineries of the three polymerases (Pol I, II and 

III) [1]. Each core transcription initiation complex consists of a promoter DNA, a polymerase, TBP 

(TATA-binding protein), a TFIIB-like factor, a TFIIF-like protein, and TFIIE or proteins with TFIIE-related 

domains. Despite the high similarity between the general factors and the conserved basal structure 

of the polymerase complexes, the mechanisms of their regulation are different. Possibly the 

mechanisms that are specific for given categories of RNA provide a selective advantage by separately 

controlling mRNA, rRNA and tRNA production. Pol II uniquely employs the so-called mediator 

complex and carries an extra C-terminal domain (CTD) on the largest subunit, Rpb1. CTD undergoes 

dynamic phosphorylation during the progression from initiation through elongation to termination 

[2,3]. The specific phosphorylation patterns that predominate at each stage of transcription recruit 

appropriate sets of mRNA-processing and histone-modifying factors [3]. These dynamic interactions 

provide a means for coupling and coordinating specific stages of transcription with other events 

determining levels of individual mRNAs. 

In contrast to the highly diverse population of mRNAs, the levels of Pol I and Pol III transcripts 

are predominantly controlled in a global manner. These two polymerases, sometimes collectively 

called “Odd Pols”, specialize in high-level synthesis of fundamental non-coding RNAs, together 

accounting for well over 90% of all cellular RNA by mass. In the yeast Saccharomyces cerevisiae Pol I 

synthesizes 35S precursor of 28S and 18S rRNA whereas the Pol III transcriptome includes 5S rRNA, 

tRNAs, U6 splicesomal RNA, the RNA subunit of the signal recognition particle (encoded by SCR1), 

RNase P RNA, and Snr52 snoRNA [4,5]. Critically for cellular economy, Pol I and Pol III need to be 
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repressed when growth is inhibited. Although controlled in a coordinated manner, these two 

polymerases use different regulatory proteins.  

The activity of the yeast Pol I enzyme is specifically modulated by Rrn3, which renders Pol I 

competent for transcription initiation. The interaction with the Pol I complex is dependent on Rrn3 

phosphorylation and is regulated by growth factor signaling pathways that adjust rRNA production to 

nutrient availability [6]. Pol III transcription in turn is uniquely controlled by a general repressor Maf1 

which is regulated by phosphorylation and relays diverse negative signals to the Pol III machinery. 

The molecular basis of the Pol III transcription repression by Maf1 is now emerging due to the 

structural and biochemical data on Pol III and Maf1 recently reported. These results have highlighted 

the multiple levels of regulation of Maf1 activity and uncovered previously unanticipated secondary 

effects of Maf1. Some of these findings will be discussed in this review. 

 

Genetics of Maf1 

Maf1, the key player in the repression of RNA Pol III transcription, was originally discovered 

in S. cerevisiae by a genetic approach. The purpose of the screen which led to the isolation of the 

maf1-1 mutant was the identification of trans-acting factors affecting the sub-cellular distribution of 

the tRNA-isopentenyltransferase Mod5 [7]. The parental strain used for that genetic screen 

contained a nonsense suppressor SUP11; maf1-1 was selected among colonies that showed 

decreased suppression following random mutagenesis. Since the SUP11 activity requires the 

cytoplasmic pool of Mod5, selection for a loss of suppression assumed a lower amount of Mod5 in 

the cytoplasm. Indeed, according to an original observation, Mod5 was mislocalized to the nucleus in 

the maf1-1 mutant [7]. Despite nearly two decades elapsing since the original discovery, the 

mechanism by which Maf1 affects Mod5 localization is not understood. A decreased level of A37 

isopentenylation in tRNAs, although never addressed experimentally, could be one reason of lower 

tRNA-mediated suppression in maf1-1.  
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In addition to decreasing the SUP11 efficiency, maf1-1 was also temperature-sensitive when 

grown on nonfermentable carbon sources. Both phenotypes were fully complemented by MAF1, a 

gene of unknown function when cloned [8]. An intriguing genetic interaction between MAF1 and Pol 

III was revealed by a search for multicopy suppressors of maf1-1; diverse variants of the RPC160 gene 

with deletions in the 3’ part of its open reading frame suppressed the maf1-1 phenotypes when over-

expressed [8]. Direct examination by Northern blotting revealed increased tRNA levels in maf1-1 cells 

indicating the function of Maf1 as a negative Pol III regulator [9]. Full inactivation of MAF1 resulted in 

the same phenotypes as those caused by the initially selected maf1-1 allele.  

Thus, although Maf1 is, apparently, the unique global regulator of Pol III transcription in 

yeast, the maf1-Δ mutant is viable and under standard conditions its growth is not compromised. 

One as yet unsolved question is why the mutant cells cannot tolerate an excess of tRNA and other 

Pol III transcripts under unfavorable growth conditions in media with a nonfermentable carbon 

source. The growth defect of maf1-Δ on medium with glycerol pointed to a deficiency in 

mitochondrial function. In yeast S. cerevisiae two Pol III synthesized tRNAs were reported as 

mitochondrially targeted, namely tRNALys and tRNAGln. Mitochondrial functions of these tRNAs are 

not completely clear although there is indirect evidence for their role in mitochondrial translation 

[10]. Since Pol III transcription is elevated in the absence of Maf1, one can assume increased 

amounts of some cytosolic tRNAs in mitochondria exerting a negative effect on mitochondrial 

translation in maf1-Δ mutant. Defects in mitochondrial translation most common cause of the 

degradation of mtDNA resulting in the formation of petite colonies known as rho-. However, no 

increased rho- accumulation was observed in maf1-Δ strains arguing against this assumption [11].  

Lastly, Maf1 could exert a specific effect on gene(s) required for growth on non-fermentable 

carbon sources and located close to tRNA gene(s) in the genome. In this mechanism called tRNA-

gene-mediated silencing (tgm), actively transcribed tRNA genes negatively regulate adjacent Pol II-

dependent genes. Indeed a role of Maf1 in tgm silencing has been reported by Moir et al. 2006 [12]. 
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They studied the silencing of the HIS3 gene by upstream adjacent SUP4 tRNA gene, both expressed 

from a plasmid in a his3 yeast strain. When SUP4 was actively transcribed, the strain remained His- 

due to the tgm silencing, and preventing SUP4 transcription by mutation in tRNA gene promoter 

resulted in the His+ colonies [13]. Unexpectedly, also the maf1-Δ mutation resulted in the His+ 

phenotype, although one should assume an opposite effect – a upregulation of SUP4 transcription 

due to the lack of Maf1 and a consequent strong silencing of HIS3 gene. That, as yet unexplained 

result sheds new light on Maf1 functioning which may be dual since tgm silencing effect of Maf1 may 

be unrelated to the effect of Maf1p on transcription by Pol III. 

Similarly, the effect of Maf1 on the efficiency of tRNA-mediated suppression is opposite to 

that expected. Although one would assume that increased cellular tRNA levels should improve the 

efficiency of tRNA-mediated nonsense suppression, data show quite the opposite. Importantly the 

overall fidelity of translation is increased in the maf1- mutant. As has been shown using a dual-gene 

reporter system, maf1- cells have two-fold lower levels of UAA and UAG stop codon read-through 

[14]. This counterintuitive result could be due to the accumulation of unprocessed tRNA precursors 

which could limit the role of mature tRNAs in translation (indirect effect of Maf1 on tRNA processing 

is described later in this review).  

Defects in tRNA biosynthesis, both in tRNA maturation and in nuclear export, induce 

translational derepression of the ubiquitous transcription factor Gcn4, a response conserved from 

yeast to mammals [15,16]. In yeast Gcn4 responds to amino acid deprivation due to accumulation of 

uncharged tRNAs that interact with Gcn2, the protein kinase that phosphorylates translation 

initiation factor eIF2. Phosphorylation of eIF2 by Gcn2 results in decreased levels of general 

translation, but increased translation of the transcription regulator Gcn4, which in turn results in 

transcription of numerous genes involved in amino acid and nucleotide biosynthesis (for review, see 

[17]. Remarkably, deletion of MAF1 led to activation of Gcn4 as well [18], confirming the existence of 

a system communicating tRNA quality control in the nucleus to the translation machinery. However, 
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the component elements of this system require further investigation since accumulation of immature 

tRNAs induced Gcn4 independently of eIF2 phosphorylation [15,18].  

Another impact of Maf1 on the yeast physiology is its role in sporulation. While competent 

for growth on media with a nonfermentable carbon source at the regular temperature, the maf1- / 

maf1- homozygous diploid is sporulation deficient [19] . Molecular basis of this phenotype needs to 

be addressed experimentally. Moreover, maf1- is lethal when combined with a number of other 

deletions as revealed by a synthetic genetic array analysis [20]. Besides genes from the functional 

categories linked to the role of Maf1 as a regulator of Pol III transcription, that screen identified as 

synthetically lethal with maf1- also genes involved in ribosome biogenesis, RNA pol II transcription, 

tRNA modification and ubiquitin-dependent proteolysis.  

While the current studies on Maf1 tend to focus on its role in Pol III control, the often 

puzzling genetic phenotypes observed for yeast maf1 mutants may serve as an inspiration for a 

broader investigations.  

Family of Maf1 proteins 

Maf1 protein is found in human, animals, plants and lower eukaryotes. It contains three 

highly conserved regions called A, B and C, which are shared among species [9,21,22] but do not 

correspond to structural modules or defined surface patches in Maf1 protein [23]. Neither potential 

prokaryotic orthologs nor substantial homology with protein domains of known function have been 

identified resulting in a striking lack of information on the functional significance of those regions and 

included signature sequences PDYDFS and WSfnYFFYNkklKR. Point mutagenesis of yeast MAF1 has 

only highlighted the importance of several serine residues (mostly non-conserved ones) and two 

nuclear localization sequences [12,24,25].  

A comparison of the arrangement of representative Maf1 sequences is presented in Figure 1. 

The distance between the B and C segments of approximately 10 aa is constant in evolution, with the 
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exception of Aspergilus nidulans (insertion of 15 aa). In contrast, the distance between regions A and 

B largely varies between species. The A and B domains are fused in Encephalitozoon cuniculi whereas 

in the yeast S. cerevisiae and Candida glabrata they are separated by a long linker of 182 aa and 174 

aa, respectively. The Maf1 sequences of C. elegans and H. sapiens have relatively shorter linkers. 

Limited proteolysis of recombinant human Maf1 resulted in two stable fragments (aa 1-45 

and aa 75-234) corresponding to the evolutionarily conserved regions. When two open reading 

frames corresponding to these two fragments were co-expressed in bacteria, they co-purified and 

co-eluted during size exclusion chromatography as soluble complex. However, when expressed 

individually, neither fragment formed a soluble, protease-resistant module. These biochemical data 

suggest that the N- and C- terminal regions of Maf1 form modules that do not fold independently but 

rather need to be co-expressed to form a stable and soluble entity [26]. In line with the biochemical 

data reported for human Maf1, a physical interaction of the N- and C-terminal regions of yeast Maf1 

has been shown using the yeast two-hybrid system and a genetic suppressor approach [26]. More 

importantly, X-ray crystallography of Maf1 at 1.55 A ° resolution revealed that Maf1 forms a globular 

structure and conserved sequence regions do not correspond to structural modules or defined 

surface patches [23] . Crystallized variant of human Maf1 lacked two regions which appear solvent-

exposed and unstructured: the linker connecting A and B conserved sequences and the C-terminal 

acidic tail. These two unstructured regions are not required for Pol III binding since both a full-length 

recombinant yeast Maf1 and a shorter variant that lacked the linker and the C-terminal tail formed a 

complex with Pol III that could be purified by size-exclusion chromatography [23]. Moreover, partial 

deletion of linker region is dispensable for Maf1 function, as shown recently by molecular analysis 

[27]. Nevertheless, unstructured regions could be involved in fine-tuning regulation of Maf1 activity 

by phosphorylation, as described in the next section.  

 

Regulation of Maf1 activity  



 

8 

 

Function of Maf1 as a negative effector of Pol III synthesis was presumed on the basis of 

molecular and analysis of maf1-1 mutant [8,9]. First, Northern analysis indicated that tRNA levels are 

elevated in maf1 mutant cells . Second, mutations in the RPC160 gene encoding the largest subunit 

of Pol III which reduce tRNA levels were identified as suppressors of the maf1-1 growth defect. Third, 

physical interaction between Maf1 and Pol III suggested a direct role for Maf1 in Pol III down-

regulation [9]. Importanly, based on Northern blot analysis of selected precursor tRNAs, Maf1 was 

found to mediate several signaling pathways by repressing Pol III transcription in response to diverse 

stresses [28].  

Maf1 activity is regulated via its phosphorylation state-dependent cellular localization 

[12,24,25,29,30,31,32,33]. Pol III repression requires Maf1 in dephosphorylated state [24,29,33,34]. 

Differentially phosphorylated forms of Maf1 can be resolved by SDS-PAGE and it is the least 

phosphorylated form that binds Pol III [22,25,29]. The increased association of Maf1 with Pol III 

under repressing conditions is correlated with dissociation of Pol III from tRNA gene [24,29,33].  

In favourable growth conditions, Maf1 is located predominantly in the cytoplasm, although is 

never fully excluded from the nucleus [12,35]. The Maf1’s cytoplasmic location is mediated by two 

mechanisms: a phosphorylation-dependent inactivation of the Maf1 nuclear location signals (NLSs) 

[12], and nuclear export of phosphorylated Maf1 by the exportin Msn5 [35]. Although the changing 

distribution of Maf1 between the nucleus and the cytoplasm could, in principle, account for the 

regulation of Poll III transcription by Maf1, two lines of evidence suggest that the phosphorylation is 

the main mechanism by which Maf1 activity is controlled and the nuclear–cytoplasmic dynamics of 

Maf1 may instead be a mechanism to fine-tune regulation. First, Maf1 is still able to regulate Pol III 

transcription in cells lacking Msn5, that is required to export phosphorylated Maf1 from the nucleus 

[35]. Second, although Maf1 is constitutively located in the nucleus in the common W303 yeast strain 

background, the regulation of Pol III is nevertheless responsive to environmental signaling [32]. 
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The predicted phosphorylation sites are mostly found in the unstructured linker located between 

conserved A and B fragments of Maf1 sequence. The migration of yeast Maf1 in SDS gels is especially 

sensitive to phosphorylation at particular serines (S177 and S178) in the linker region [31]. 

Phosphorylation within the long unstructured linker likely affects the interaction between the 

conserved A and BC regions of the yeast Maf1 necessary for the full repression of Pol III activity [26]. 

Biochemical studies regarding the significance of the unstructured regions for the regulation of Maf1 

activity by phosphorylation are, however, limited since their presence in the recombinant yeast Maf1 

greatly reduces solubility and promotes protein aggregation.  

Maf1 is also phosphorylated in mammalian cells. Human Maf1 becomes largely dephosphorylated 

after stress, and it is the dephosphorylated form of Maf1 that associates with Pol III [22,36,37].  

 

Maf1 as mediator of signaling pathways  

In yeast, Maf1 is the only Pol III negative regulator that acts as an effector of several 

signalling pathways [28]. In addition to the down-regulation that normally occurs in the stationary 

phase, Maf1 is also required for Pol III repression accompanying rapamycin treatment, starvation, 

secretion defects, as well as oxidative and replication stress [24,25,28,29,30,38]. Cells depleted of 

Maf1 remain alive under stress conditions, but, surprisingly, Maf1-mediated regulation is essential 

during the transition from fermentative to glycerol-based respiratory growth [11]. This observation 

underscored the critical function of Maf1 in the coupling of Pol III transcription to metabolic 

processes and/or energy production dependent on the carbon source [11,12]. 

 The molecular mechanisms that trigger Maf1 activity in response to different signaling 

pathways are only partially understood. The main Maf1 phosphatase is protein phosphatase 4 (PP4) 

[34]. The PP4 action is most likely direct, as a portion of cellular PP4 co-precipitates with Maf1. By 

dephosphorylating Maf1 PP4 mediates rapid Pol III repression in response to diverse stresses [34].  
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In response to favourable growth conditions yeast Maf1 is phosphorylated at different sites 

by several kinases. So far four of them, PKA, Scha9, TORC1 and CK2 have been described 

[12,25,31,32,33], but other Maf1 kinases are likely to be identified in the future . The impact of each 

of those kinases on the control of Maf1 interaction with the Pol III complex is, however, difficult to 

estimate using available experimental tools.  

Sch9 certainly effects the Maf1 interaction with Pol III since inactivation of all potential Sch9 

phosphorylation sites (which are the same as PKA sites) in a Maf1-7A mutant promoted its nuclear 

localization and increased the Maf1-Pol III association [25,31,39]. Importantly in the Maf1-7A mutant 

cells Pol III was not constitutively repressed and responded robustly to rapamycin [25]. Moreover, 

the Pol III activity was still sensitive to rapamycin in Maf1-7E “phosphomimetic” mutant. Those 

results suggested that regulation by Sch9/PKA is insufficient for confer Pol III control and some 

additional step is required. Either these kinases must target factor(s) in addition to Maf1, or Maf1-7E 

has to be phosphorylated in additional positions (and, conversely, Maf1-7A additionally 

dephosphorylated) [25].  

A further opportunity for the control of Maf1 activity is provided by chromatin-bound kinases 

TOR and CK2. Although both yeast and human TOR phosphorylate Maf1 [32,37,40,41], control by 

TOR seems not to be conserved in evolution. The mTOR kinase localizes to mammalian tRNA and 5S 

rRNA genes by interaction with TFIIIC, a DNA binding factor that recognizes the promoters of those 

genes. By this association, mTOR-mediated phosphorylation of Maf1 functionally contributes to the 

regulation of the repressive activity of Maf1 at mammalian tRNA genes [40]. In contrast, the yeast 

TORC1 kinase binds to rDNA chromatin, 35S as well as 5S genes, and is not detected on tRNA genes 

[32]. TORC1 has been postulated to interact with and phosphorylate Maf1 at the rDNA loci, in this 

way regulating its translocation from the nucleolus to the nucleoplasm [32]. However, 

phosphorylation by TORC1 was detected for recombinant, but not native, yeast Maf1 and the 

phosphorylation site has not been identified. Moreover, Maf1 association with 5S rDNA genes is 
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controversial [33]. Remarkably, TORC1 phosphorylates Sch9 at multiple sites and this 

phosphorylation is required for the catalytic activity of Sch9, another kinase of yeast Maf1 [25]. Thus, 

TORC1 could control yeast Maf1 indirectly, via Sch9 in the nucleoplasm.  

Maf1 is also a target of CK2 kinase [27,33] which is enriched on promoters of Pol III genes 

[33]. Maf1 also binds to tRNA genes, presumably indirectly by association with Pol III, and likely is 

located in close proximity to CK2. Indeed, their direct interaction was confirmed by co-

immunoprecipitation [33]. The phosphorylation of Maf1 by CK2 is correlated with important events 

required for Pol III activation: release of Maf1 from chromatin and dissociation of Maf1 from the Pol 

III complex [33]. However, it is difficult to estimate impact of CK2-mediated Maf1 phosphorylation on 

Pol III activation. The experimental model used to study the role of Maf1 phosphorylation by CK2 in 

Pol III control included transferring yeast between repressive conditions in a medium with a non-

fermentable carbon source to favourable conditions in glucose medium [27,33]. Although mutation 

of all potential CK2 sites in Maf1 resulted in less efficient in Pol III transcription in glucose medium 

[33], almost no effect on Pol III reactivation upon transfer from glycerol to glucose has been 

observed [27]. These data do not support the unconditional requirement for CK2 phosphorylation of 

Maf1 during derepression of Pol III transcription. Nevertheless, CK2 is a promiscuous kinase and 

certainly Maf1 is not its only substrate associated with Pol III activity since the components of Pol III 

machinery in yeast and humans (namely TFIIIB subunits and SNAP190 factor) are phosphorylated or 

controlled by CK2 [42,43,44,45]. Concerning other CK2 targets, phosphorylation of Maf1 is probably 

one of several other trials triggering Pol III activation upon transfer of yeast from repressive 

respiratory growth conditions to glucose. 

Interaction of yeast Maf1 with Pol III apparatus and mechanism of Pol III repression 

 

The Pol III apparatus consists of three complexes: the Pol III enzyme and the general factors 

TFIIIB and TFIIIC required for transcription initiation and promoter recognition, respectively. An 
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additional factor, TFIIIA, is required only for 5S rRNA gene transcription. In vitro, the primary step in 

the transcription of a tRNA gene is the binding of TFIIIC to the intragenic promoter elements known 

as the A and B boxes. A promoter-bound TFIIIC recruits the TFIIIB complex upstream of the 

transcription initiation site. TFIIIB is composed of the TBP (TATA-binding protein), Brf1 and Bdp1 

subunits. Brf1 participates in TFIIIB-DNA complex formation by creating an extended connection 

between the opposite sides of the bent DNA, while Bdp1 generates an additional bend between the 

transcription start site and upstream of the TBP-interacting region, extending the TFIIIB-DNA contacts 

upstream of the TATA-box. The TFIIIB-DNA complex is sufficient to recruit the Pol III complex for 

multiple transcription cycles (reviewed in [46,47]). Efficiency and selectivity of Pol III transcription 

also depends on ist ability to recognize precisely positioned termination signals [48].  

The Pol III complex (0.7 MDa) comprises 17 subunits. Five subunits are common to the three 

Pols, two are common with Pol I and are paralogs of Pol II subunits, five are paralogs of Pol I and Pol 

II subunits, and five are unique to Pol III. The structural core of Pol III is formed by nine subunits, 

C160, C128, AC40, AC19, ABC27, ABC23, ABC14.5, ABC10β and ABC10. On the periphery of the core 

enzyme are eight additional subunits which form three distinct subcomplexes: C53-C37, C82-C34-C31 

and C17-C25 [23,49]. C53-C37 is involved in promoter opening, elongation and termination, but re-

initiation requires activity of C37-associated subunit C11 which additionally assures intrinsic cleavage 

activity of Pol III [50,51,52,53,54]. The heterotrimer C82-C34-C31, required for promoter-dependent 

transcription initiation, is partially related to the Pol II initiation factor TFIIE at least for C82 and C34 

subunits that, similarly to TFIIE components, contain winged helix (WH) domains [1,55]. The structure 

of C82-C34-C31 located at the Pol III clamp over the active center cleft is rearranged by Maf1 which 

binds to the Pol III clamp at the rim of the cleft [23]. Most of the density assigned to the C34 WH 

domains in the Pol III-DNA-RNA complex was absent in the Pol III-Maf1 complex, indicating a Maf1-

dependent displacement of these domains. The relocation of a specific WH domain of the C34 

subunit is thought to weaken its interaction with the Brf1 subunit of the TFIIIB initiation factor, 
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suggesting that Maf1 impairs Pol III recruitment to promoters. Indeed, although free Pol III stably 

binds the Brf1–TATA-binding protein (TBP)–DNA complex, the Pol III–Maf1 complex does not [23]. 

This is consistent with earlier evidence that recruitment of Maf1 to class III chromatin correlates with 

the displacement of Pol III and TFIIIB [21]. Importantly, Maf1 does not inhibit the catalytic activity of 

Pol III, allowing DNA binding and RNA synthesis [23,56]. 

Exactly how Maf1 is recruited to Pol III during ongoing transcription is unknown. Maf1 does 

not bind to a preassembled Pol III–Brf1–TBP–DNA initiation complex [23,56] and the interactions of 

Pol III with Maf1 and a Brf1-TBT-DNA are mutually exclusive [23]. It is consistent with earlier evidence 

that Maf1 prevents Pol III promoter interaction [21,24]. Significantly, Maf1 does not impair binding of 

a DNA-RNA scaffold nor Pol III elongation to the end of the template [23].  

The observation that Pol III in complex with nucleic acids in its active center can simultaneously bind 

Maf1 suggested Maf1 binding at the elongation step [23]. This recruitment could occur by an 

undefined yet event causing Pol III repositioning during elongation or termination. During 

transcriptional elongation, the Pol III conformation is flexible [49]. Earlier hypothesis assumed a 

competition between the two Pol III catalytic states – fast stepping elongation state and slow 

stepping cleavage state - to influence the duration of pausing and the termination efficiency [50,57]. 

It was shown that the duration of this pause and termination is controlled by heterodimer C37–C53 

[51]. Additionally, pausing and termination is linked Pol III cleavage activity mediated by C11 subunit 

[50,51,53,54]. Interestingly C11 has dual activity since, independently on a role in cleavage, it is also 

responsible for Pol III reinitiation, possibly by affecting the transition from the cleavage state to the 

elongationstate of Pol III [51,54]. The demonstration that C53/C37 lies near the pol III active site and 

participates inpromoter opening [52], is consistent with this hypothesis. With a model of the two Pol 

III catalytic states in mind, one could imagine that one catalytic state favors Maf1 binding during Pol 

III elongation or Maf1 interfering with one catalytic state may favor the other. Presumably Maf1 

binding is related to or promotes “slow steping” cleavage state taking account the increased 
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occupancy of Maf1 at Pol III genes under repressive conditions [24,29,33]. If Maf1 interferes with C11 

activity is currently unknown.  

 

The rate of Pol III transcription increases at least fivefold through a process known as facilitated 

recycling, which couples the termination of transcription with reinitiation in a manner that is not yet 

precisely understood [58]. Facilitated recycling of both yeast and human Pol III was studied in the in 

vitro mechanism [56,59]. In course of studying effect of Maf1 on Pol III recycling it was shown that 

Pol III bound to preinitiation complexes or in elongation complexes is protected from repression by 

Maf1 and can undergo several rounds of initiation [56]. These results indicated that recombinant 

Maf1 is unable to inhibit facilitated recycling in the in vitro system [56]. Situation in the living cell is, 

however, different because, both Pol III machinery and Maf1, are under dynamic regulation by 

environmental conditions and additionally Pol III complex is rearranged during transcription cycle.   In 

vivo mechanism of Maf1-mediated repression was proposed that allows immediate adjusting of Pol 

III activity to changing environmental conditions [60]. This model assumes Maf1 binding to the Pol III 

elongation complex at each cycle and its dissociation prior to initiation of the next cycle. 

Experimental data show unequivocally that a small amount of dephosphorylated, Pol III-associated 

Maf1 is present even in glucose-grown yeast [29,35]. CK2 kinase, which is present directly on the Pol 

III complex, ensures a high rate of transcription via phosphorylation of both Maf1 ,TFIIIB and 

potentially other Pol III components [33,42,43,45]. (Figure 2a). Conversely, when cells encounter 

unfavourable growth conditions, the CK2 catalytic subunit dissociates from the Pol III complex and is 

no longer able to stimulate transcription [33,42]. Moreover, dephosphorylated Maf1 is imported 

from the cytoplasm increasing its concentration in the nucleus [12]. This is the time when Maf1 takes 

over control and inhibits transcription (Figure 2b). This mechanism promises constant monitoring of 

the environment and a transcription shut-down immediately after the conditions become adverse.  
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In light of the high costs of tRNA synthesis, such a redundant system preventing a wasteful use of 

limited resources seems justified.  

 

Indirect effect of Maf1 on tRNA processing 

 Individual stages of transcription are often coordinated with posttranscriptional events 

necessary for proper gene expression. Pol II transcription is directly coupled with mRNA maturation 

via CTD which serves as a binding platform for mRNA processing factors [2]. Co-transcriptional 

processing occurs also during rRNA synthesis [61]. Although it is unknown whether early tRNA 

maturation occurs co-transcriptionally, Pol III transcription in yeast is synchronized with the 

processing of tRNA precursors and Maf1, as the master Pol III regulator plays a major role in this 

synchronization [18]. 

tRNA processing involves multiple steps that occur in yeast at different subcellular locations [for 

review see [62]. Initial transcripts are extended at both the 5’ and 3’ termini and ten tRNA gene 

families in yeast contain introns. The processing of the 5’ leader by RNaseP and the trimming of 3’ 

trailer involving La protein, Rex1 exonuclease and RNaseZ occur in the nucleus. The end-processed 

tRNAs are then transported to the cytoplasm by the exportin Los1 and introns are removed by 

cytoplasmic splicing machinery located at the outer surface of mitochondria. tRNA molecules are 

modified in many ways and these modifications are added throughout the processing, both in the 

nucleus and in the cytoplasm.  

Earlier reported relationship between tRNA transcription and processing in yeast focused on a 

dual role of Bdp1, essential subunit of TFIIIB factor [63]. Deletion of a small internal fragment of Bdp1 

resulted in aberrant maturation of tRNA and temperature-sensitive phenotype, which could be 

overcome by overexpression of RPR1 gene encoding subunit of RNaseP. Moreover, Bdp1, separately 

or in conjunction with TFIIIB, interacts physically with RNaseP complex suggesting its role in coupling 

of tRNA transcription and processing [63].  
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Direct role of tRNA processing factors in Pol III transcription was shown in mammalian cells. RNAseP 

is required for synthesis of tRNA in HeLa cells and acts as a catalytic ribonucleic protein in Pol III 

transcription excreting its role through interaction with Pol III complex and chromatin of active tRNA 

and 5S rRNA genes [64]. Mammalian La protein mediates transcript release and Pol III termination 

[65].. 

An initial experimental observation to suggest a role of Maf1 in the posttranscriptional steps of 

tRNA biosynthesis in yeast came from analyses employing Pol III-specific microarrays [11]. A 

comparison of Pol III-transcribed RNAs from maf1-Δ and wild type cells shifted to non-permissive 

conditions showed that the levels of individual tRNA species were increased in the mutant from less 

than two-fold to over ten-fold. Significantly, most of the tRNAs encoded by intron-containing genes 

were elevated more than were the tRNAs encoded by intron-lacking genes. For example, the intron-

containing tRNAPhe (GAA) was increased in maf1-Δ over 11-fold, tRNATrp (CCA) – over 10-fold, and 

tRNALeu
 (CAA) – nearly 9-fold [11]. A further study of tRNAs maf1-Δ cells by Northern hybridization 

highlighted an imbalance between the rate of tRNA synthesis and efficiency of its maturation. Both 

the initial transcripts and end-processed, intron-containing tRNA precursors accumulated in the 

absence of Maf1. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing 

against a direct role of Maf1 in tRNA maturation and suggesting saturation of the processing 

machinery by the increased amounts of primary transcripts. Indeed saturation of the tRNA exportin 

Los1 was shown as one reason why end-matured intron-containing pre-tRNAs accumulated in cells 

lacking Maf1 [18]. It is likely that beside the Los1-mediated export other processes can be limiting for 

efficient pre-tRNA processing in maf1-Δ cells, especially under unfavorable growth conditions. 

However, the systematic regulation of tRNA processing by environmental conditions has not been 

addressed experimentally so far.  
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Maf1-mediated repression of RNA polymerase III activity inhibits tRNA degradation via RTD 

pathway 

 

RNA levels are determined by two opposing distinct processes; transcription and decay. Transcription 

occurs in the nucleus whereas the major RNA decay pathways operate in the cytoplasm. Despite 

their location in different compartments, the two processes are tightly coordinated by an unknown 

yet mechanism. Several recent papers report a mutual feedback between mRNA synthesis and 

degradation [66,67]. In general, impairing mRNA transcription increases its stability. A similar relation 

has recently been reported for tRNA: Maf1-mediated repression of Pol III transcription has been 

shown to inhibit tRNA degradation [68] (Figure 3).  

The folding and stability of tRNA is affected by specific modifications of individual nucleotides in 

tRNA of nucleotides, with each type of tRNA carrying an unique modification pattern [69,70]. 

tRNAVal(AAC)
, lacking the m7G46 and m5C49 modifications, is a substrate for the rapid tRNA decay (RTD) 

pathway. In the absence of the respective tRNA-metlyltransferases in a trm4Δtrm8Δ mutant, 

tRNAVal(AAC) is subject to rapid tRNA decay and is degraded at 37oC by 5’→3’ exonucleases, Xrn1 and 

Rat1, leading to a temperature-sensitive growth [71]. The phenotype of the trm4Δtrm8Δ mutant can 

be suppressed by overexpression of the Maf1-encoding gene or, more efficiently, expression of the 

unphosphorylable Maf1-7A mutant that constitutively binds the Pol III complex and reduces tRNA 

transcription [68]. The suppression by overexpressed MAF1 is accompanied by a two-fold 

stabilization of hypomodified tRNAVal(AAC), while the Maf1-7A mutant gives an even stronger effect. 

Additionally a 5’-terminal part of the RPC160 gene has been also cloned as an autonomous 

suppressor of the trm4Δtrm8Δ phenotype. Indeed, similar suppressor actions of an overdose of Maf1 

and the N-terminal part of Rpc160 on the trm4Δtrm8Δ growth defect were expected basing on 

earlier data. Overexpression of a 5’-terminal fragment as well as point mutations in the RPC160 gene 
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were identified previously as suppressors of the maf1Δ growth phenotype. That suppression was 

accompanied by reduction of tRNA levels in maf1Δ cells [8,9].  

Along the same lines, inhibition of tRNA synthesis in a Maf1-independent manner, either by a 

point mutation in the RNA polymerase III subunit Rpc128 or a decreased expression of the Rpc17 

subunit, also suppressed the degradation of hypomodified tRNAVal(AAC). Similar suppression was 

achieved by overexpression of TEF1 and VAS1, encoding, respectively, elongation factor eEF1A and 

valyl-tRNA synthetase, which likely protect hypomodified tRNAVal(AAC) by direct interactions [68]. The 

evidence that elongation factor eEF1A competes with the rapid decay pathway for substrate tRNAs 

was also presented by independent study of Eric Phizicky group [72]. According to the presented 

model inhibition of tRNA transcription leads to stabilization of hypomodified tRNAVal(AAC) due to an 

altered protein : RNA ratio and consequent more efficient protection by tRNA-interacting proteins.  

 

Concluding remarks 

The role of Maf1 as a general repressor of Pol III transcription appears to be conserved in 

eukaryotes. Human Maf1 also negatively regulates Pol III transcription [22,73,74] and Drosophila 

Maf1 represses tRNA synthesis in vivo in larvae [75,76]. That conserved function suggests also a 

conserved mechanism of Pol III regulation by Maf1.  

As an unicellular organism, easily amenable to genetic manipulations, yeast are a convenient 

model for studying a basic regulatory mechanism of a tight Pol III control. However, relatively little is 

known about how the persistence of activated or repressed Pol III states is controlled directly on 

tRNA genes, despite the tremendous advances in deciphering the Pol III structure, recruitment of its 

auxiliary factors and modes of their regulation. There are still numerous questions that remain open 

and require further investigation. It is of great interest to know when exactly Maf1 binds the Pol III 

complex during the cycling of Pol III and what the mode of Pol III function in the absence of Maf1 is. 
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Maf1 interacts physically with Pol III complex, therefore one may assume that the alterations in Pol III 

structure/activity upon changed environmental conditions would be affected by the absence of 

Maf1. What is the exact role of CK2 in the regulation of Pol III machinery and by which mechanism 

does Maf1 affects the CK2 association with Pol III chromatin? What is the role of other Maf1 kinases? 

And finally how many more kinases phosphorylates Maf1? These questions should be addressed in 

further research. 

Legends to Figures 

Figure 1 

Alignment of Maf1 sequences. Schematic representation of Maf1 protein sequences from different 

species: E.c.; Encephalitozoon cuniculi (gi|19069247|, size: 161 aa), C.e; Caenorhabditis elegans 

(gi|17506011|, size: 245 aa), A.t.; Arabidopsis thaliana (gi|22326767|, size: 224 aa), D.d.; 

Dictyostelium discoideum (gi|66816633|, size: 278 aa), C.i.; Ciona intestinalis gi|198415188|, size: 

233 aa), D.m.;Drosophila melanogaster (gi|46409204|, size: 226 aa), D.r. ;Danio rerio ( gi|47087413|, 

size: 247 aa), H.s.; Homo sapiens (gi|49065352|, size: 256 aa), A.n.; Aspergillus nidulans 

(gi|67901388|, size: 314 aa), S.p.; Schizosaccharomyces pombe (gi|254745531|, size: 238 aa), C.g.; 

Candida glabrata (gi|49529111|, size: 391 aa) and S.c. ; Saccharomyces cerevisiae (gi|1170854|, size: 

395 aa). Protein sequences have been aligned with MUSCLE multiple alignment software and the 

figure created with Geneious Pro 4.5.4 software. Conserved regions A, B and C are boxed and 

localization of signature sequences is indicated. Localization of point mutation of S. cerevisiae Maf1 

essential for Pol III repression R232H, K331A R332A; L242A D248A, P247D D248A, P247A R332A [24]; 

D248/D250A, D40/R41A [12]; K35E [26] was marked with asterisks. For the alignment of yeast and 

human Maf1 proteins including structural features reader is referred to Fig. 3A in ref. [23].  

Figure 2. 
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Model of Pol III regulation by Maf1. Maf1 is recruited to Pol III, with a probability dependent on the 

growth conditions, at each transcription cycle. Maf1 binds to Pol III machinery after imitation step as 

concluded on the basis of biochemical and kinetic study [23] Following termination, Maf1 and CK2 

confront each other in the Pol III initiation complex. Under favourable growth conditions (Figure 2a), 

Maf1 is released from Pol III [24,25,29] due to CK2 phosphorylation of Maf1 and/or activation of 

other components of Pol III machinery [42, 43,45]. Maf1 release allows reinitiation and efficient Pol 

III transcription. Subsequent export to the cytoplasm decreases the Maf1 concentration in the 

nucleus [12,35] and lowers the probability of its re-recruitment to the Pol III complex. Under adverse 

conditions (Figure 2b), the catalytic subunits of CK2 dissociate from TBP and CK2 becomes inactive 

[42]. Maf1, associated with the elongation complex, cannot be re-phosphorylated and remains 

bound to Pol III and precludes re-initiation. Additionally, dephosphorylated Maf1 is imported from 

the cytoplasm increasing its concentration in the nucleus [12,35]. In a short time estimated in 

minutes , all Pol III becomes bound by dephosphorylated Maf1 and is released from tRNA genes. 

Since Pol III genes are short and elongation is rapid, this stops all Pol III transcription almost 

instantaneously.  

Figure 3. 

Relationship between transcription and posttranscriptional steps of tRNA biosynthesis in yeast. 

Primary Pol III-synthesized transcripts are end-processed in the nucleus and exported to the 

cytoplasm by Los1. Introns are spliced out at the other membrane of mitochondria by tRNA 

endonuclease (Sen complex). CCA-addition at 3’ terminus is followed by tRNA charging with 

aminoacids, binding to elongation factor (eEF1-α) and delivery to ribosomes. Turnover of mature 

tRNAs is controlled in the cytoplasm by rapid decay (RTD) pathway. Initial processing of tRNA in the 

nucleus is affected by Bdp1 subunit of TFIIIB [64]. Control of Los1-mediated export of tRNA from the 

nucleus is coordinated with regulation of Pol III transcription by Maf1 [18]. tRNA rapid decay pathway 

interacts with both, Pol III transcription and translation machinery [68,72]. 
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Abstract 

tRNA synthesis by yeast RNA polymerase III (Pol III) is down-regulated under growth-limiting 

conditions. This control is mediated by Maf1, a global negative regulator of Pol III transcription. 

Conserved from yeast to man, Maf1 was originally discovered in Saccharomyces cerevisiae by a 

genetic approach. Details regarding the molecular basis of Pol III repression by Maf1 are now 

emerging from the recently reported structural and biochemical data on Pol III and Maf1. The 

phosphorylation status of Maf1 determines its nuclear localization and interaction  with the Pol III 

complex and several Maf1 kinases have been identified to be  involved in Pol III control. Moreover, 

Maf1  indirectly affects tRNA maturation and decay. Here I discuss the current understanding of the 

mechanisms that oversee the Maf1-mediated regulation of Pol III activity and the role of Maf1 in the 

control of tRNA biosynthesis in yeast.  
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Introduction 

The existence of three RNA polymerases (Pol) is well documented for all investigated 

eukaryotes. Pol I synthesizes ribosomal RNA (rRNA), Pol II produces mainly mRNAs, and Pol III 

generates tRNAs, 5S rRNA and other small noncoding RNAs. Recent studies reveal substantial 

conservation between the transcription initiation machineries of the three polymerases (Pol I, II and 

III) [1]. Each core transcription initiation complex consists of a promoter DNA, a polymerase, TBP 

(TATA-binding protein), a TFIIB-like factor, a TFIIF-like protein, and TFIIE or proteins with TFIIE-related 

domains. Despite the high similarity between the general factors and the conserved basal structure 

of the polymerase complexes, the mechanisms of their regulation are different. Possibly the 

mechanisms that are specific for given categories of RNA provide a selective advantage by separately 

controlling mRNA, rRNA and tRNA production. Pol II uniquely employs the so-called mediator 

complex and carries an extra C-terminal domain (CTD) on the largest subunit, Rpb1. CTD undergoes 

dynamic phosphorylation during the progression from initiation through elongation to termination 

[2,3]. The specific phosphorylation patterns that predominate at each stage of transcription recruit 

appropriate sets of mRNA-processing and histone-modifying factors [3]. These dynamic interactions 

provide a means for coupling and coordinating specific stages of transcription with other events 

determining levels of individual mRNAs. 

In contrast to the highly diverse population of mRNAs, the levels of Pol I and Pol III transcripts 

are predominantly controlled in a global manner. These two polymerases, sometimes collectively 

called “Odd Pols”, specialize in high-level synthesis of fundamental non-coding RNAs, together 

accounting for well over 90% of all cellular RNA by mass. In the yeast Saccharomyces cerevisiae Pol I 

synthesizes 35S precursor of 28S and 18S rRNA whereas the Pol III transcriptome includes 5S rRNA, 

tRNAs, U6 splicesomal RNA, the RNA subunit of the signal recognition particle (encoded by SCR1), 

RNase P RNA, and Snr52 snoRNA [4,5]. Critically for cellular economy, Pol I and Pol III need to be 
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repressed when growth is inhibited. Although controlled in a coordinated manner, these two 

polymerases use different regulatory proteins.  

The activity of the yeast Pol I enzyme is specifically modulated by Rrn3, which renders Pol I 

competent for transcription initiation. The interaction with the Pol I complex is dependent on Rrn3 

phosphorylation and is regulated by growth factor signaling pathways that adjust rRNA production to 

nutrient availability [6]. Pol III transcription in turn is uniquely controlled by a general repressor Maf1 

which is regulated by phosphorylation and relays diverse negative signals to the Pol III machinery. 

The molecular basis of the Pol III transcription repression by Maf1 is now emerging due to the 

structural and biochemical data on Pol III and Maf1 recently reported. These results have highlighted 

the multiple levels of regulation of Maf1 activity and uncovered previously unanticipated secondary 

effects of Maf1. Some of these findings will be discussed in this review. 

 

Genetics of Maf1 

Maf1, the key player in the repression of RNA Pol III transcription, was originally discovered 

in S. cerevisiae by a genetic approach. The purpose of the screen which led to the isolation of the 

maf1-1 mutant was the identification of trans-acting factors affecting the sub-cellular distribution of 

the tRNA-isopentenyltransferase Mod5 [7]. The parental strain used for that genetic screen 

contained a nonsense suppressor SUP11; maf1-1 was selected among colonies that showed 

decreased suppression following random mutagenesis. Since the SUP11 activity requires the 

cytoplasmic pool of Mod5, selection for a loss of suppression assumed a lower amount of Mod5 in 

the cytoplasm. Indeed, according to an original observation, Mod5 was mislocalized to the nucleus in 

the maf1-1 mutant [7]. Despite nearly two decades elapsing since the original discovery, the 

mechanism by which Maf1 affects Mod5 localization is not understood. A decreased level of A37 

isopentenylation in tRNAs, although never addressed experimentally, could be one reason of lower 

tRNA-mediated suppression in maf1-1.  
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In addition to decreasing the SUP11 efficiency, maf1-1 was also temperature-sensitive when 

grown on nonfermentable carbon sources. Both phenotypes were fully complemented by MAF1, a 

gene of unknown function when cloned [8]. An intriguing genetic interaction between MAF1 and Pol 

III was revealed by a search for multicopy suppressors of maf1-1; diverse variants of the RPC160 gene 

with deletions in the 3’ part of its open reading frame suppressed the maf1-1 phenotypes when over-

expressed [8]. Direct examination by Northern blotting revealed increased tRNA levels in maf1-1 cells 

indicating the function of Maf1 as a negative Pol III regulator [9]. Full inactivation of MAF1 resulted in 

the same phenotypes as those caused by the initially selected maf1-1 allele.  

Thus, although Maf1 is, apparently, the unique global regulator of Pol III transcription in 

yeast, the maf1-Δ mutant is viable and under standard conditions its growth is not compromised. 

One as yet unsolved question is why the mutant cells cannot tolerate an excess of tRNA and other 

Pol III transcripts under unfavorable growth conditions in media with a nonfermentable carbon 

source. The growth defect of maf1-Δ on medium with glycerol pointed to a deficiency in 

mitochondrial function. In yeast S. cerevisiae two Pol III synthesized tRNAs were reported as 

mitochondrially targeted, namely tRNALys and tRNAGln. Mitochondrial functions of these tRNAs are 

not completely clear although there is indirect evidence for their role in mitochondrial translation 

[10]. Since Pol III transcription is elevated in the absence of Maf1, one can assume increased 

amounts of some cytosolic tRNAs in mitochondria exerting a negative effect on mitochondrial 

translation in maf1-Δ mutant. Defects in mitochondrial translation most common cause of the 

degradation of mtDNA resulting in the formation of petite colonies known as rho-. However, no 

increased rho- accumulation was observed in maf1-Δ strains arguing against this assumption [11].  

Lastly, Maf1 could exert a specific effect on gene(s) required for growth on non-fermentable 

carbon sources and located close to tRNA gene(s) in the genome. In this mechanism called tRNA-

gene-mediated silencing (tgm), actively transcribed tRNA genes negatively regulate adjacent Pol II-

dependent genes. Indeed a role of Maf1 in tgm silencing has been reported by Moir et al. 2006 [12]. 
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They studied the silencing of the HIS3 gene by upstream adjacent SUP4 tRNA gene, both expressed 

from a plasmid in a his3 yeast strain. When SUP4 was actively transcribed, the strain remained His- 

due to the tgm silencing, and preventing SUP4 transcription by mutation in tRNA gene promoter 

resulted in the His+ colonies [13]. Unexpectedly, also the maf1-Δ mutation resulted in the His+ 

phenotype, although one should assume an opposite effect – a upregulation of SUP4 transcription 

due to the lack of Maf1 and a consequent strong silencing of HIS3 gene. That, as yet unexplained 

result sheds new light on Maf1 functioning which may be dual since tgm silencing effect of Maf1 may 

be unrelated to the effect of Maf1p on transcription by Pol III. 

Similarly, the effect of Maf1 on the efficiency of tRNA-mediated suppression is opposite to 

that expected. Although one would assume that increased cellular tRNA levels should improve the 

efficiency of tRNA-mediated nonsense suppression, data show quite the opposite. Importantly the 

overall fidelity of translation is increased in the maf1- mutant. As has been shown using a dual-gene 

reporter system, maf1- cells have two-fold lower levels of UAA and UAG stop codon read-through 

[14]. This counterintuitive result could be due to the accumulation of unprocessed tRNA precursors 

which could limit the role of mature tRNAs in translation (indirect effect of Maf1 on tRNA processing 

is described later in this review).  

Defects in tRNA biosynthesis, both in tRNA maturation and in nuclear export, induce 

translational derepression of the ubiquitous transcription factor Gcn4, a response conserved from 

yeast to mammals [15,16]. In yeast Gcn4 responds to amino acid deprivation due to accumulation of 

uncharged tRNAs that interact with Gcn2, the protein kinase that phosphorylates translation 

initiation factor eIF2. Phosphorylation of eIF2 by Gcn2 results in decreased levels of general 

translation, but increased translation of the transcription regulator Gcn4, which in turn results in 

transcription of numerous genes involved in amino acid and nucleotide biosynthesis (for review, see 

[17]. Remarkably, deletion of MAF1 led to activation of Gcn4 as well [18], confirming the existence of 

a system communicating tRNA quality control in the nucleus to the translation machinery. However, 
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the component elements of this system require further investigation since accumulation of immature 

tRNAs induced Gcn4 independently of eIF2 phosphorylation [15,18].  

Another impact of Maf1 on the yeast physiology is its role in sporulation. While competent 

for growth on media with a nonfermentable carbon source at the regular temperature, the maf1- / 

maf1- homozygous diploid is sporulation deficient [19] . Molecular basis of this phenotype needs to 

be addressed experimentally. Moreover, maf1- is lethal when combined with a number of other 

deletions as revealed by a synthetic genetic array analysis [20]. Besides genes from the functional 

categories linked to the role of Maf1 as a regulator of Pol III transcription, that screen identified as 

synthetically lethal with maf1- also genes involved in ribosome biogenesis, RNA pol II transcription, 

tRNA modification and ubiquitin-dependent proteolysis.  

While the current studies on Maf1 tend to focus on its role in Pol III control, the often 

puzzling genetic phenotypes observed for yeast maf1 mutants may serve as an inspiration for a 

broader investigations.  

Family of Maf1 proteins 

Maf1 protein is found in human, animals, plants and lower eukaryotes. It contains three 

highly conserved regions called A, B and C, which are shared among species [9,21,22] but do not 

correspond to structural modules or defined surface patches in Maf1 protein [23]. Neither potential 

prokaryotic orthologs nor substantial homology with protein domains of known function have been 

identified resulting in a striking lack of information on the functional significance of those regions and 

included signature sequences PDYDFS and WSfnYFFYNkklKR. Point mutagenesis of yeast MAF1 has 

only highlighted the importance of several serine residues (mostly non-conserved ones) and two 

nuclear localization sequences [12,24,25].  

A comparison of the arrangement of representative Maf1 sequences is presented in Figure 1. 

The distance between the B and C segments of approximately 10 aa is constant in evolution, with the 
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exception of Aspergilus nidulans (insertion of 15 aa). In contrast, the distance between regions A and 

B largely varies between species. The A and B domains are fused in Encephalitozoon cuniculi whereas 

in the yeast S. cerevisiae and Candida glabrata they are separated by a long linker of 182 aa and 174 

aa, respectively. The Maf1 sequences of C. elegans and H. sapiens have relatively shorter linkers. 

Limited proteolysis of recombinant human Maf1 resulted in two stable fragments (aa 1-45 

and aa 75-234) corresponding to the evolutionarily conserved regions. When two open reading 

frames corresponding to these two fragments were co-expressed in bacteria, they co-purified and 

co-eluted during size exclusion chromatography as soluble complex. However, when expressed 

individually, neither fragment formed a soluble, protease-resistant module. These biochemical data 

suggest that the N- and C- terminal regions of Maf1 form modules that do not fold independently but 

rather need to be co-expressed to form a stable and soluble entity [26]. In line with the biochemical 

data reported for human Maf1, a physical interaction of the N- and C-terminal regions of yeast Maf1 

has been shown using the yeast two-hybrid system and a genetic suppressor approach [26]. More 

importantly, X-ray crystallography of Maf1 at 1.55 A ° resolution revealed that Maf1 forms a globular 

structure and conserved sequence regions do not correspond to structural modules or defined 

surface patches [23] . Crystallized variant of human Maf1 lacked two regions which appear solvent-

exposed and unstructured: the linker connecting A and B conserved sequences and the C-terminal 

acidic tail. These two unstructured regions are not required for Pol III binding since both a full-length 

recombinant yeast Maf1 and a shorter variant that lacked the linker and the C-terminal tail formed a 

complex with Pol III that could be purified by size-exclusion chromatography [23]. Moreover, partial 

deletion of linker region is dispensable for Maf1 function, as shown recently by molecular analysis 

[27]. Nevertheless, unstructured regions could be involved in fine-tuning regulation of Maf1 activity 

by phosphorylation, as described in the next section.  

 

Regulation of Maf1 activity  
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Function of Maf1 as a negative effector of Pol III synthesis was presumed on the basis of 

molecular and analysis of maf1-1 mutant [8,9]. First, Northern analysis indicated that tRNA levels are 

elevated in maf1 mutant cells . Second, mutations in the RPC160 gene encoding the largest subunit 

of Pol III which reduce tRNA levels were identified as suppressors of the maf1-1 growth defect. Third, 

physical interaction between Maf1 and Pol III suggested a direct role for Maf1 in Pol III down-

regulation [9]. Importanly, based on Northern blot analysis of selected precursor tRNAs, Maf1 was 

found to mediate several signaling pathways by repressing Pol III transcription in response to diverse 

stresses [28].  

Maf1 activity is regulated via its phosphorylation state-dependent cellular localization 

[12,24,25,29,30,31,32,33]. Pol III repression requires Maf1 in dephosphorylated state [24,29,33,34]. 

Differentially phosphorylated forms of Maf1 can be resolved by SDS-PAGE and it is the least 

phosphorylated form that binds Pol III [22,25,29]. The increased association of Maf1 with Pol III 

under repressing conditions is correlated with dissociation of Pol III from tRNA gene [24,29,33].  

In favourable growth conditions, Maf1 is located predominantly in the cytoplasm, although is 

never fully excluded from the nucleus [12,35]. The Maf1’s cytoplasmic location is mediated by two 

mechanisms: a phosphorylation-dependent inactivation of the Maf1 nuclear location signals (NLSs) 

[12], and nuclear export of phosphorylated Maf1 by the exportin Msn5 [35]. Although the changing 

distribution of Maf1 between the nucleus and the cytoplasm could, in principle, account for the 

regulation of Poll III transcription by Maf1, two lines of evidence suggest that the phosphorylation is 

the main mechanism by which Maf1 activity is controlled and the nuclear–cytoplasmic dynamics of 

Maf1 may instead be a mechanism to fine-tune regulation. First, Maf1 is still able to regulate Pol III 

transcription in cells lacking Msn5, that is required to export phosphorylated Maf1 from the nucleus 

[35]. Second, although Maf1 is constitutively located in the nucleus in the common W303 yeast strain 

background, the regulation of Pol III is nevertheless responsive to environmental signaling [32]. 
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The predicted phosphorylation sites are mostly found in the unstructured linker located between 

conserved A and B fragments of Maf1 sequence. The migration of yeast Maf1 in SDS gels is especially 

sensitive to phosphorylation at particular serines (S177 and S178) in the linker region [31]. 

Phosphorylation within the long unstructured linker likely affects the interaction between the 

conserved A and BC regions of the yeast Maf1 necessary for the full repression of Pol III activity [26]. 

Biochemical studies regarding the significance of the unstructured regions for the regulation of Maf1 

activity by phosphorylation are, however, limited since their presence in the recombinant yeast Maf1 

greatly reduces solubility and promotes protein aggregation.  

Maf1 is also phosphorylated in mammalian cells. Human Maf1 becomes largely dephosphorylated 

after stress, and it is the dephosphorylated form of Maf1 that associates with Pol III [22,36,37].  

 

Maf1 as mediator of signaling pathways  

In yeast, Maf1 is the only Pol III negative regulator that acts as an effector of several 

signalling pathways [28]. In addition to the down-regulation that normally occurs in the stationary 

phase, Maf1 is also required for Pol III repression accompanying rapamycin treatment, starvation, 

secretion defects, as well as oxidative and replication stress [24,25,28,29,30,38]. Cells depleted of 

Maf1 remain alive under stress conditions, but, surprisingly, Maf1-mediated regulation is essential 

during the transition from fermentative to glycerol-based respiratory growth [11]. This observation 

underscored the critical function of Maf1 in the coupling of Pol III transcription to metabolic 

processes and/or energy production dependent on the carbon source [11,12]. 

 The molecular mechanisms that trigger Maf1 activity in response to different signaling 

pathways are only partially understood. The main Maf1 phosphatase is protein phosphatase 4 (PP4) 

[34]. The PP4 action is most likely direct, as a portion of cellular PP4 co-precipitates with Maf1. By 

dephosphorylating Maf1 PP4 mediates rapid Pol III repression in response to diverse stresses [34].  
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In response to favourable growth conditions yeast Maf1 is phosphorylated at different sites 

by several kinases. So far four of them, PKA, Scha9, TORC1 and CK2 have been described 

[12,25,31,32,33], but other Maf1 kinases are likely to be identified in the future . The impact of each 

of those kinases on the control of Maf1 interaction with the Pol III complex is, however, difficult to 

estimate using available experimental tools.  

Sch9 certainly effects the Maf1 interaction with Pol III since inactivation of all potential Sch9 

phosphorylation sites (which are the same as PKA sites) in a Maf1-7A mutant promoted its nuclear 

localization and increased the Maf1-Pol III association [25,31,39]. Importantly in the Maf1-7A mutant 

cells Pol III was not constitutively repressed and responded robustly to rapamycin [25]. Moreover, 

the Pol III activity was still sensitive to rapamycin in Maf1-7E “phosphomimetic” mutant. Those 

results suggested that regulation by Sch9/PKA is insufficient for confer Pol III control and some 

additional step is required. Either these kinases must target factor(s) in addition to Maf1, or Maf1-7E 

has to be phosphorylated in additional positions (and, conversely, Maf1-7A additionally 

dephosphorylated) [25].  

A further opportunity for the control of Maf1 activity is provided by chromatin-bound kinases 

TOR and CK2. Although both yeast and human TOR phosphorylate Maf1 [32,37,40,41], control by 

TOR seems not to be conserved in evolution. The mTOR kinase localizes to mammalian tRNA and 5S 

rRNA genes by interaction with TFIIIC, a DNA binding factor that recognizes the promoters of those 

genes. By this association, mTOR-mediated phosphorylation of Maf1 functionally contributes to the 

regulation of the repressive activity of Maf1 at mammalian tRNA genes [40]. In contrast, the yeast 

TORC1 kinase binds to rDNA chromatin, 35S as well as 5S genes, and is not detected on tRNA genes 

[32]. TORC1 has been postulated to interact with and phosphorylate Maf1 at the rDNA loci, in this 

way regulating its translocation from the nucleolus to the nucleoplasm [32]. However, 

phosphorylation by TORC1 was detected for recombinant, but not native, yeast Maf1 and the 

phosphorylation site has not been identified. Moreover, Maf1 association with 5S rDNA genes is 
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controversial [33]. Remarkably, TORC1 phosphorylates Sch9 at multiple sites and this 

phosphorylation is required for the catalytic activity of Sch9, another kinase of yeast Maf1 [25]. Thus, 

TORC1 could control yeast Maf1 indirectly, via Sch9 in the nucleoplasm.  

Maf1 is also a target of CK2 kinase [27,33] which is enriched on promoters of Pol III genes 

[33]. Maf1 also binds to tRNA genes, presumably indirectly by association with Pol III, and likely is 

located in close proximity to CK2. Indeed, their direct interaction was confirmed by co-

immunoprecipitation [33]. The phosphorylation of Maf1 by CK2 is correlated with important events 

required for Pol III activation: release of Maf1 from chromatin and dissociation of Maf1 from the Pol 

III complex [33]. However, it is difficult to estimate impact of CK2-mediated Maf1 phosphorylation on 

Pol III activation. The experimental model used to study the role of Maf1 phosphorylation by CK2 in 

Pol III control included transferring yeast between repressive conditions in a medium with a non-

fermentable carbon source to favourable conditions in glucose medium [27,33]. Although mutation 

of all potential CK2 sites in Maf1 resulted in less efficient in Pol III transcription in glucose medium 

[33], almost no effect on Pol III reactivation upon transfer from glycerol to glucose has been 

observed [27]. These data do not support the unconditional requirement for CK2 phosphorylation of 

Maf1 during derepression of Pol III transcription. Nevertheless, CK2 is a promiscuous kinase and 

certainly Maf1 is not its only substrate associated with Pol III activity since the components of Pol III 

machinery in yeast and humans (namely TFIIIB subunits and SNAP190 factor) are phosphorylated or 

controlled by CK2 [42,43,44,45]. Concerning other CK2 targets, phosphorylation of Maf1 is probably 

one of several other trials triggering Pol III activation upon transfer of yeast from repressive 

respiratory growth conditions to glucose. 

Interaction of yeast Maf1 with Pol III apparatus and mechanism of Pol III repression 

 

The Pol III apparatus consists of three complexes: the Pol III enzyme and the general factors 

TFIIIB and TFIIIC required for transcription initiation and promoter recognition, respectively. An 
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additional factor, TFIIIA, is required only for 5S rRNA gene transcription. In vitro, the primary step in 

the transcription of a tRNA gene is the binding of TFIIIC to the intragenic promoter elements known 

as the A and B boxes. A promoter-bound TFIIIC recruits the TFIIIB complex upstream of the 

transcription initiation site. TFIIIB is composed of the TBP (TATA-binding protein), Brf1 and Bdp1 

subunits. Brf1 participates in TFIIIB-DNA complex formation by creating an extended connection 

between the opposite sides of the bent DNA, while Bdp1 generates an additional bend between the 

transcription start site and upstream of the TBP-interacting region, extending the TFIIIB-DNA contacts 

upstream of the TATA-box. The TFIIIB-DNA complex is sufficient to recruit the Pol III complex for 

multiple transcription cycles (reviewed in [46,47]). Efficiency and selectivity of Pol III transcription 

also depends on ist ability to recognize precisely positioned termination signals [48].  

The Pol III complex (0.7 MDa) comprises 17 subunits. Five subunits are common to the three 

Pols, two are common with Pol I and are paralogs of Pol II subunits, five are paralogs of Pol I and Pol 

II subunits, and five are unique to Pol III. The structural core of Pol III is formed by nine subunits, 

C160, C128, AC40, AC19, ABC27, ABC23, ABC14.5, ABC10β and ABC10. On the periphery of the core 

enzyme are eight additional subunits which form three distinct subcomplexes: C53-C37, C82-C34-C31 

and C17-C25 [23,49]. C53-C37 is involved in promoter opening, elongation and termination, but re-

initiation requires activity of C37-associated subunit C11 which additionally assures intrinsic cleavage 

activity of Pol III [50,51,52,53,54]. The heterotrimer C82-C34-C31, required for promoter-dependent 

transcription initiation, is partially related to the Pol II initiation factor TFIIE at least for C82 and C34 

subunits that, similarly to TFIIE components, contain winged helix (WH) domains [1,55]. The structure 

of C82-C34-C31 located at the Pol III clamp over the active center cleft is rearranged by Maf1 which 

binds to the Pol III clamp at the rim of the cleft [23]. Most of the density assigned to the C34 WH 

domains in the Pol III-DNA-RNA complex was absent in the Pol III-Maf1 complex, indicating a Maf1-

dependent displacement of these domains. The relocation of a specific WH domain of the C34 

subunit is thought to weaken its interaction with the Brf1 subunit of the TFIIIB initiation factor, 
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suggesting that Maf1 impairs Pol III recruitment to promoters. Indeed, although free Pol III stably 

binds the Brf1–TATA-binding protein (TBP)–DNA complex, the Pol III–Maf1 complex does not [23]. 

This is consistent with earlier evidence that recruitment of Maf1 to class III chromatin correlates with 

the displacement of Pol III and TFIIIB [21]. Importantly, Maf1 does not inhibit the catalytic activity of 

Pol III, allowing DNA binding and RNA synthesis [23,56]. 

Exactly how Maf1 is recruited to Pol III during ongoing transcription is unknown. Maf1 does 

not bind to a preassembled Pol III–Brf1–TBP–DNA initiation complex [23,56] and the interactions of 

Pol III with Maf1 and a Brf1-TBT-DNA are mutually exclusive [23]. It is consistent with earlier evidence 

that Maf1 prevents Pol III promoter interaction [21,24]. Significantly, Maf1 does not impair binding of 

a DNA-RNA scaffold nor Pol III elongation to the end of the template [23].  

The observation that Pol III in complex with nucleic acids in its active center can simultaneously bind 

Maf1 suggested Maf1 binding at the elongation step [23]. This recruitment could occur by an 

undefined yet event causing Pol III repositioning during elongation or termination. During 

transcriptional elongation, the Pol III conformation is flexible [49]. Earlier hypothesis assumed a 

competition between the two Pol III catalytic states – fast stepping elongation state and slow 

stepping cleavage state - to influence the duration of pausing and the termination efficiency [50,57]. 

It was shown that the duration of this pause and termination is controlled by heterodimer C37–C53 

[51]. Additionally, pausing and termination is linked Pol III cleavage activity mediated by C11 subunit 

[50,51,53,54]. Interestingly C11 has dual activity since, independently on a role in cleavage, it is also 

responsible for Pol III reinitiation, possibly by affecting the transition from the cleavage state to the 

elongationstate of Pol III [51,54]. The demonstration that C53/C37 lies near the pol III active site and 

participates inpromoter opening [52], is consistent with this hypothesis. With a model of the two Pol 

III catalytic states in mind, one could imagine that one catalytic state favors Maf1 binding during Pol 

III elongation or Maf1 interfering with one catalytic state may favor the other. Presumably Maf1 

binding is related to or promotes “slow steping” cleavage state taking account the increased 
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occupancy of Maf1 at Pol III genes under repressive conditions [24,29,33]. If Maf1 interferes with C11 

activity is currently unknown.  

 

The rate of Pol III transcription increases at least fivefold through a process known as facilitated 

recycling, which couples the termination of transcription with reinitiation in a manner that is not yet 

precisely understood [58]. Facilitated recycling of both yeast and human Pol III was studied in the in 

vitro mechanism [56,59]. In course of studying effect of Maf1 on Pol III recycling it was shown that 

Pol III bound to preinitiation complexes or in elongation complexes is protected from repression by 

Maf1 and can undergo several rounds of initiation [56]. These results indicated that recombinant 

Maf1 is unable to inhibit facilitated recycling in the in vitro system [56]. Situation in the living cell is, 

however, different because, both Pol III machinery and Maf1, are under dynamic regulation by 

environmental conditions and additionally Pol III complex is rearranged during transcription cycle.   In 

vivo mechanism of Maf1-mediated repression was proposed that allows immediate adjusting of Pol 

III activity to changing environmental conditions [60]. This model assumes Maf1 binding to the Pol III 

elongation complex at each cycle and its dissociation prior to initiation of the next cycle. 

Experimental data show unequivocally that a small amount of dephosphorylated, Pol III-associated 

Maf1 is present even in glucose-grown yeast [29,35]. CK2 kinase, which is present directly on the Pol 

III complex, ensures a high rate of transcription via phosphorylation of both Maf1 ,TFIIIB and 

potentially other Pol III components [33,42,43,45]. (Figure 2a). Conversely, when cells encounter 

unfavourable growth conditions, the CK2 catalytic subunit dissociates from the Pol III complex and is 

no longer able to stimulate transcription [33,42]. Moreover, dephosphorylated Maf1 is imported 

from the cytoplasm increasing its concentration in the nucleus [12]. This is the time when Maf1 takes 

over control and inhibits transcription (Figure 2b). This mechanism promises constant monitoring of 

the environment and a transcription shut-down immediately after the conditions become adverse.  
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In light of the high costs of tRNA synthesis, such a redundant system preventing a wasteful use of 

limited resources seems justified.  

 

Indirect effect of Maf1 on tRNA processing 

 Individual stages of transcription are often coordinated with posttranscriptional events 

necessary for proper gene expression. Pol II transcription is directly coupled with mRNA maturation 

via CTD which serves as a binding platform for mRNA processing factors [2]. Co-transcriptional 

processing occurs also during rRNA synthesis [61]. Although it is unknown whether early tRNA 

maturation occurs co-transcriptionally, Pol III transcription in yeast is synchronized with the 

processing of tRNA precursors and Maf1, as the master Pol III regulator plays a major role in this 

synchronization [18]. 

tRNA processing involves multiple steps that occur in yeast at different subcellular locations [for 

review see [62]. Initial transcripts are extended at both the 5’ and 3’ termini and ten tRNA gene 

families in yeast contain introns. The processing of the 5’ leader by RNaseP and the trimming of 3’ 

trailer involving La protein, Rex1 exonuclease and RNaseZ occur in the nucleus. The end-processed 

tRNAs are then transported to the cytoplasm by the exportin Los1 and introns are removed by 

cytoplasmic splicing machinery located at the outer surface of mitochondria. tRNA molecules are 

modified in many ways and these modifications are added throughout the processing, both in the 

nucleus and in the cytoplasm.  

Earlier reported relationship between tRNA transcription and processing in yeast focused on a 

dual role of Bdp1, essential subunit of TFIIIB factor [63]. Deletion of a small internal fragment of Bdp1 

resulted in aberrant maturation of tRNA and temperature-sensitive phenotype, which could be 

overcome by overexpression of RPR1 gene encoding subunit of RNaseP. Moreover, Bdp1, separately 

or in conjunction with TFIIIB, interacts physically with RNaseP complex suggesting its role in coupling 

of tRNA transcription and processing [63].  
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Direct role of tRNA processing factors in Pol III transcription was shown in mammalian cells. RNAseP 

is required for synthesis of tRNA in HeLa cells and acts as a catalytic ribonucleic protein in Pol III 

transcription excreting its role through interaction with Pol III complex and chromatin of active tRNA 

and 5S rRNA genes [64]. Mammalian La protein mediates transcript release and Pol III termination 

[65].. 

An initial experimental observation to suggest a role of Maf1 in the posttranscriptional steps of 

tRNA biosynthesis in yeast came from analyses employing Pol III-specific microarrays [11]. A 

comparison of Pol III-transcribed RNAs from maf1-Δ and wild type cells shifted to non-permissive 

conditions showed that the levels of individual tRNA species were increased in the mutant from less 

than two-fold to over ten-fold. Significantly, most of the tRNAs encoded by intron-containing genes 

were elevated more than were the tRNAs encoded by intron-lacking genes. For example, the intron-

containing tRNAPhe (GAA) was increased in maf1-Δ over 11-fold, tRNATrp (CCA) – over 10-fold, and 

tRNALeu
 (CAA) – nearly 9-fold [11]. A further study of tRNAs maf1-Δ cells by Northern hybridization 

highlighted an imbalance between the rate of tRNA synthesis and efficiency of its maturation. Both 

the initial transcripts and end-processed, intron-containing tRNA precursors accumulated in the 

absence of Maf1. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing 

against a direct role of Maf1 in tRNA maturation and suggesting saturation of the processing 

machinery by the increased amounts of primary transcripts. Indeed saturation of the tRNA exportin 

Los1 was shown as one reason why end-matured intron-containing pre-tRNAs accumulated in cells 

lacking Maf1 [18]. It is likely that beside the Los1-mediated export other processes can be limiting for 

efficient pre-tRNA processing in maf1-Δ cells, especially under unfavorable growth conditions. 

However, the systematic regulation of tRNA processing by environmental conditions has not been 

addressed experimentally so far.  
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Maf1-mediated repression of RNA polymerase III activity inhibits tRNA degradation via RTD 

pathway 

 

RNA levels are determined by two opposing distinct processes; transcription and decay. Transcription 

occurs in the nucleus whereas the major RNA decay pathways operate in the cytoplasm. Despite 

their location in different compartments, the two processes are tightly coordinated by an unknown 

yet mechanism. Several recent papers report a mutual feedback between mRNA synthesis and 

degradation [66,67]. In general, impairing mRNA transcription increases its stability. A similar relation 

has recently been reported for tRNA: Maf1-mediated repression of Pol III transcription has been 

shown to inhibit tRNA degradation [68] (Figure 3).  

The folding and stability of tRNA is affected by specific modifications of individual nucleotides in 

tRNA of nucleotides, with each type of tRNA carrying an unique modification pattern [69,70]. 

tRNAVal(AAC)
, lacking the m7G46 and m5C49 modifications, is a substrate for the rapid tRNA decay (RTD) 

pathway. In the absence of the respective tRNA-metlyltransferases in a trm4Δtrm8Δ mutant, 

tRNAVal(AAC) is subject to rapid tRNA decay and is degraded at 37oC by 5’→3’ exonucleases, Xrn1 and 

Rat1, leading to a temperature-sensitive growth [71]. The phenotype of the trm4Δtrm8Δ mutant can 

be suppressed by overexpression of the Maf1-encoding gene or, more efficiently, expression of the 

unphosphorylable Maf1-7A mutant that constitutively binds the Pol III complex and reduces tRNA 

transcription [68]. The suppression by overexpressed MAF1 is accompanied by a two-fold 

stabilization of hypomodified tRNAVal(AAC), while the Maf1-7A mutant gives an even stronger effect. 

Additionally a 5’-terminal part of the RPC160 gene has been also cloned as an autonomous 

suppressor of the trm4Δtrm8Δ phenotype. Indeed, similar suppressor actions of an overdose of Maf1 

and the N-terminal part of Rpc160 on the trm4Δtrm8Δ growth defect were expected basing on 

earlier data. Overexpression of a 5’-terminal fragment as well as point mutations in the RPC160 gene 
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were identified previously as suppressors of the maf1Δ growth phenotype. That suppression was 

accompanied by reduction of tRNA levels in maf1Δ cells [8,9].  

Along the same lines, inhibition of tRNA synthesis in a Maf1-independent manner, either by a 

point mutation in the RNA polymerase III subunit Rpc128 or a decreased expression of the Rpc17 

subunit, also suppressed the degradation of hypomodified tRNAVal(AAC). Similar suppression was 

achieved by overexpression of TEF1 and VAS1, encoding, respectively, elongation factor eEF1A and 

valyl-tRNA synthetase, which likely protect hypomodified tRNAVal(AAC) by direct interactions [68]. The 

evidence that elongation factor eEF1A competes with the rapid decay pathway for substrate tRNAs 

was also presented by independent study of Eric Phizicky group [72]. According to the presented 

model inhibition of tRNA transcription leads to stabilization of hypomodified tRNAVal(AAC) due to an 

altered protein : RNA ratio and consequent more efficient protection by tRNA-interacting proteins.  

 

Concluding remarks 

The role of Maf1 as a general repressor of Pol III transcription appears to be conserved in 

eukaryotes. Human Maf1 also negatively regulates Pol III transcription [22,73,74] and Drosophila 

Maf1 represses tRNA synthesis in vivo in larvae [75,76]. That conserved function suggests also a 

conserved mechanism of Pol III regulation by Maf1.  

As an unicellular organism, easily amenable to genetic manipulations, yeast are a convenient 

model for studying a basic regulatory mechanism of a tight Pol III control. However, relatively little is 

known about how the persistence of activated or repressed Pol III states is controlled directly on 

tRNA genes, despite the tremendous advances in deciphering the Pol III structure, recruitment of its 

auxiliary factors and modes of their regulation. There are still numerous questions that remain open 

and require further investigation. It is of great interest to know when exactly Maf1 binds the Pol III 

complex during the cycling of Pol III and what the mode of Pol III function in the absence of Maf1 is. 
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Maf1 interacts physically with Pol III complex, therefore one may assume that the alterations in Pol III 

structure/activity upon changed environmental conditions would be affected by the absence of 

Maf1. What is the exact role of CK2 in the regulation of Pol III machinery and by which mechanism 

does Maf1 affects the CK2 association with Pol III chromatin? What is the role of other Maf1 kinases? 

And finally how many more kinases phosphorylates Maf1? These questions should be addressed in 

further research. 

Legends to Figures 

Figure 1 

Alignment of Maf1 sequences. Schematic representation of Maf1 protein sequences from different 

species: E.c.; Encephalitozoon cuniculi (gi|19069247|, size: 161 aa), C.e; Caenorhabditis elegans 

(gi|17506011|, size: 245 aa), A.t.; Arabidopsis thaliana (gi|22326767|, size: 224 aa), D.d.; 

Dictyostelium discoideum (gi|66816633|, size: 278 aa), C.i.; Ciona intestinalis gi|198415188|, size: 

233 aa), D.m.;Drosophila melanogaster (gi|46409204|, size: 226 aa), D.r. ;Danio rerio ( gi|47087413|, 

size: 247 aa), H.s.; Homo sapiens (gi|49065352|, size: 256 aa), A.n.; Aspergillus nidulans 

(gi|67901388|, size: 314 aa), S.p.; Schizosaccharomyces pombe (gi|254745531|, size: 238 aa), C.g.; 

Candida glabrata (gi|49529111|, size: 391 aa) and S.c. ; Saccharomyces cerevisiae (gi|1170854|, size: 

395 aa). Protein sequences have been aligned with MUSCLE multiple alignment software and the 

figure created with Geneious Pro 4.5.4 software. Conserved regions A, B and C are boxed and 

localization of signature sequences is indicated. Localization of point mutation of S. cerevisiae Maf1 

essential for Pol III repression R232H, K331A R332A; L242A D248A, P247D D248A, P247A R332A [24]; 

D248/D250A, D40/R41A [12]; K35E [26] was marked with asterisks. For the alignment of yeast and 

human Maf1 proteins including structural features reader is referred to Fig. 3A in ref. [23].  

Figure 2. 
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Model of Pol III regulation by Maf1. Maf1 is recruited to Pol III, with a probability dependent on the 

growth conditions, at each transcription cycle. Maf1 binds to Pol III machinery after imitation step as 

concluded on the basis of biochemical and kinetic study [23] Following termination, Maf1 and CK2 

confront each other in the Pol III initiation complex. Under favourable growth conditions (Figure 2a), 

Maf1 is released from Pol III [24,25,29] due to CK2 phosphorylation of Maf1 and/or activation of 

other components of Pol III machinery [42, 43,45]. Maf1 release allows reinitiation and efficient Pol 

III transcription. Subsequent export to the cytoplasm decreases the Maf1 concentration in the 

nucleus [12,35] and lowers the probability of its re-recruitment to the Pol III complex. Under adverse 

conditions (Figure 2b), the catalytic subunits of CK2 dissociate from TBP and CK2 becomes inactive 

[42]. Maf1, associated with the elongation complex, cannot be re-phosphorylated and remains 

bound to Pol III and precludes re-initiation. Additionally, dephosphorylated Maf1 is imported from 

the cytoplasm increasing its concentration in the nucleus [12,35]. In a short time estimated in 

minutes , all Pol III becomes bound by dephosphorylated Maf1 and is released from tRNA genes. 

Since Pol III genes are short and elongation is rapid, this stops all Pol III transcription almost 

instantaneously.  

Figure 3. 

Relationship between transcription and posttranscriptional steps of tRNA biosynthesis in yeast. 

Primary Pol III-synthesized transcripts are end-processed in the nucleus and exported to the 

cytoplasm by Los1. Introns are spliced out at the other membrane of mitochondria by tRNA 

endonuclease (Sen complex). CCA-addition at 3’ terminus is followed by tRNA charging with 

aminoacids, binding to elongation factor (eEF1-α) and delivery to ribosomes. Turnover of mature 

tRNAs is controlled in the cytoplasm by rapid decay (RTD) pathway. Initial processing of tRNA in the 

nucleus is affected by Bdp1 subunit of TFIIIB [64]. Control of Los1-mediated export of tRNA from the 

nucleus is coordinated with regulation of Pol III transcription by Maf1 [18]. tRNA rapid decay pathway 

interacts with both, Pol III transcription and translation machinery [68,72]. 
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