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Abstract

Purification of suitable quantity of homogenous protein is very often the bottleneck in protein structural studies.
Overexpression of a desired gene and attachment of enzymatically cleavable affinity tags to the protein of interest made a
breakthrough in this field. Here we describe the structure of Galleria mellonella silk proteinase inhibitor 2 (GmSPI-2)
determined both by X-ray diffraction and NMR spectroscopy methods. GmSPI-2 was purified using a new method consisting
in non-enzymatic His-tag removal based on a highly specific peptide bond cleavage reaction assisted by Ni(II) ions. The X-
ray crystal structure of GmSPI-2 was refined against diffraction data extending to 0.98 Å resolution measured at 100 K using
synchrotron radiation. Anisotropic refinement with the removal of stereochemical restraints for the well-ordered parts of the
structure converged with R factor of 10.57% and Rfree of 12.91%. The 3D structure of GmSPI-2 protein in solution was solved
on the basis of 503 distance constraints, 10 hydrogen bonds and 26 torsion angle restraints. It exhibits good geometry and
side-chain packing parameters. The models of the protein structure obtained by X-ray diffraction and NMR spectroscopy are
very similar to each other and reveal the same b2ab fold characteristic for Kazal-family serine proteinase inhibitors.
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Introduction

Despite significant methodological progress [1], structural

studies of proteins still require significant amount of pure samples.

To achieve this goal, the affinity tag methodology is commonly

used. However, the presence of an affinity tag may affect the

biological activity of a target protein and interfere with crystalli-

zation [2]. Therefore it is recommended to remove affinity tags

from the purified protein. This has often been, however, the

Achilles heel of this approach. The proteinase-mediated enzymatic

cleavage commonly used for affinity tag removal poses serious

risks, such as non-specific degradation of the target protein [3–5].

Moreover, costly preparative-scale purification of the cleavage

products is necessary, including the proteinase inactivation and

removal step. Chemical cleavage agents are suggested as

inexpensive alternative to proteolytic enzymes [6–8]. However,

none of them is commonly used due to their low specificity and

harsh reaction conditions [9–11].

Our previous studies demonstrated that Ni(II) ions hydrolyze

the peptide bond preceding the serine or threonine residue in (S/

T)XHZ peptide sequences [12]. The specificity of the cleavage was

confirmed for a range of peptides and the reaction mechanism was

precisely elucidated [13]. Recently we have positively verified the

biotechnological applicability of the Ni(II)-depended peptide bond

cleavage reaction for the recombinant GmSPI-2 protein, which is

the subject of our structural analysis in this work. The protein

purification procedures in that study were performed on an

analytical scale [14]. However those results indicated that the

methodology could be easily scaled up for preparative purification

of recombinant proteins for structural studies.

The GmSPI-2 protein is a structurally unique Kazal-family

serine proteinase inhibitor identified in the silk of wax moth

Galleria mellonella [15]. It is the shortest Kazal-family serine
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proteinase inhibitor in animals. Unlike most Kazal-family serine

proteinase inhibitors, where each functional domain consists of

50–60 amino acid residues with six conserved cysteines, GmSPI-2

is a single domain inhibitor of 36 residues with only four cysteines

(Fig. 1). Computer modeling suggested that, in contrast to typical

Kazal-family serine proteinase inhibitors, the conformation of

GmSPI-2 includes not three but only two loops which are

stabilized and closed into rings by disulfide bridges between the

four conserved cysteines [15]. The inhibitor exhibits high activity

against subtilisin and proteinase K (proteases from Bacillus subtilis
and the Tritirachium album, respectively) [15]. Recombinant

GmSPI-2 activity is identical with the native protein [16]. Since

GmSPI-2 is a much potent proteinase inhibitor than some

commercially available inhibitors (e.g. AEBSF, 4-(2-aminoethyl)

benzenesulfonyl fluoride hydrochloride; [17]), it could be used as a

replacement or supplement of available inhibitors or inhibitor

cocktails. Additionally, when fused to a target protein, GmSPI-2

could protect the target protein against proteinase degradation

[17,18]. Thus, GmSPI-2 can be considered as a valuable and

economically important protective tool in biotechnology for

enhancing the yields and prolonging the life of desired protein

products.

Here we discuss the application of the previously described

nickel-based purification methodology, scaled up for this structural

work, and demonstrate the usefulness of this innovative approach

for structural studies. The determinations of the atomic resolution

X-ray and high quality NMR structure of the GmSPI-2 protein,

both critically dependent on large quantities of highly pure protein

samples, were possible partially because of this protein purification

method.

Materials and Methods

GmSPI-2-SRHWAP-H6 fusion protein expression and
purification

The cDNA sequence encoding SPI-2 protein with modified C-

terminal end was used as a template (Leu codon was added as

described [16]). The primers were extended to introduce a PstI

restriction site at the 59 end of the amplified product and an XbaI

restriction site at the 39 end, followed nucleotides encoding

SRHWAP and six histidyl residues. The alternative SPI2-

SRHWAP-H6 fusion protein was designed in order to improve

the yield of purification and the purity of the final product. The

appropriate gene construct was successfully cloned under the

control of AOX promoter in a pPICZaB vector (Invitrogen), using

standard methods. As a result of the cloning procedure and the

pre-protein processing in Pichia pastoris, GmSPI-2 was extended

by the GluAlaAla- tripeptide at the N-terminus and by the -Leu40

residue at the C-terminus. The fusion protein secreted to the

media was initially purified by affinity chromatography on Ni-

NTA-agarose (Qiagen) in the presence of 20 mM phosphate

buffer pH 7.4, containing 0.5 M NaCl. The fusion protein was

then eluted from the column with 250 mM imidazole and dialyzed

overnight against water in order to remove the excess of salts.

Typically 2 ml of elution fraction was dialyzed against 2 L of

water. Next, the protein was purified by HPLC on a Vydac C18

semipreparative column. The eluting solvent A was 0.1% TFA/

water and solvent B was 0.1% TFA/90% acetonitrile/water. A

linear gradient of acetonitrile from 10% to 40% in 30 min was

applied at a flow rate of 2 mL/min, with detection at 220 nm and

280 nm. After elution, the fusion protein was frozen and

lyophilized. The HPLC purification step was applied to assess

the amount of GmSPI-2.

Affinity tag cleavage
The GmSPI-2 fusion protein after lyophilization was weighed

(portions of 5–7 mg) and dissolved in 20 mM phosphate buffer pH

7.4, containing 0.5 M NaCl and incubated with Ni-NTA-agarose

(Qiagen) for 2 h at 4uC. Then the GmSPI-2 fusion protein

immobilized on Ni-NTA agarose was incubated in 100 mM

Hepes buffer pH 8.2, containing 150 mM NaCl and 7.5 Mm

NiCl2 at 50uC for 19 h. The GmSPI-2 protein obtained in the

flow-through fraction was further purified using the Breeze HPLC

system (Waters) on a Vydac C18 semipreparative column. The

eluting solvent A was 0.1% TFA/water and solvent B was 0.1%

TFA/90% acetonitrile/water. A linear gradient of solvent B from

10% to 40% in 30 min was used at a flow rate of 2 mL/min. The

molecular mass of the collected HPLC single peak was measured

on a Q-Tof1 ESI MS spectrometer (Micromass).

Crystallization
Screening for crystallization conditions was performed manually

using Crystal Screen and Crystal Screen 2 [19] and the hanging-

drop vapor-diffusion technique at 292 K, by mixing 1 ml protein

(6.5 mg ml21 in water) and 1 ml reservoir solution. Needle-like

crystals grew to dimensions of 0.660.0560.05 mm within one

week over a reservoir solution consisting of 1.4 M sodium citrate

and 0.1 M Hepes pH 7.5 (Crystal Screen condition no. 38). For

cryoprotection, the crystal was transferred to a solution consisting

of the reservoir solution supplemented with 20% (v/v) glycerol.

X-Ray data collection
Diffraction data were measured at 100 K on a Rayonics MX-

225 CCD detector at beamline BL 14.1 of the Berliner

Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung

m.b.H. (BESSY, Berlin). Integration, scaling and merging of the

intensity data was accomplished using the XDS package [20]. The

best crystal diffracted to 0.95 Å but due to a glitch of the data

collection program, only 52u of the high-resolution pass were

collected. Therefore, the low-resolution and truncated high-

resolution passes were scaled together with the data collected for

another crystal. This gave the complete data set at 0.98 Å,

characterized in Table 1. An overall B-factor of 8.2 A2 was

Figure 1. Sequence alignment of classical (OMTKY3), non-classical group 1 (CrSPI-1-D1), non-classical group 2 (LDTI) and GmSPI-2
Kazal-family serine proteinase inhibitors. The alignment was calculated with ClustalW2 [46]. Cysteine residues are highlighted in yellow. Amino
acids identical in all four proteins are marked with an asterisk (*), conservative substitutions with a colon (:), and semi-conservative substitutions with
a period (.).
doi:10.1371/journal.pone.0106936.g001
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estimated from the Wilson plot using the XSCALE program from

XDS package [20].

Data measured to high resolution with a synchrotron X-ray

beam can be contaminated with effects of crystal radiation

damage. However, the plot of decay R factor [21] against frame-

number difference was around zero and scaling factors for the

individual diffraction images fluctuated around 1 without any

decreasing trend, indicating no or very little effect of radiation

damage. The data were also checked for diffraction anisotropy

[22]. A very low spread in values of the three principal

components (0.48 Å2) indicated almost no anisotropy.

X-Ray structure solution and refinement
The structure was solved by molecular replacement using the

MOLREP program from the CCP4 suite [23,24] and the

structure of leech-derived tryptase inhibitor (LDTI; PDB code

1an1; [25]) as the search model. The amino-acid sequence of the

model shares 40% identity and 60% similarity (LALIGN; [26])

with GmSPI-2. The initial maximum-likelihood structure-factor

refinement was carried out in REFMAC [27] using all data, with

the exception of 1031 reflections (6%) flagged for cross-validation

purposes. No s cutoff was applied. The manual rebuilding of the

Table 1. X-ray data collection and model refinement statistics.

Data Collection

Crystal size (mm) 0.760.0560.05

Space group P212121

Unit cell parameters (Å) a = 27.27, b = 31.24, c = 35.74

X-ray source BESSY 14.1

Temperature (K) 100

No. of images 360a/180/52

Oscillation angle (u) 1.0a/2.0/1.0

Wavelength (Å) 0.91841a/0.80000/0.80000

Resolution (Å) 20.00–0.98 (1.01–0.98)b

Rint
c(%) 7.2 (46.0)

,I/sI. 22.52 (2.04)

Reflections

measured 222092

unique 17179

in test set 1031

Mosaicity (u) 0.13

Completeness (%) 94.8 (84.5)

Redundancy 12.9 (2.3)

Wilson B-factor (Å2) 8.2

Refinement

Resolution (Å) 20.00–0.98 (1.02–0.98)

No. reflections 17179 (1790)

Rwork/Rfree
d 10.57/12.91

No. of atoms

protein 328

solvent 96

B-factors (Å2)

protein 6.5

solvent 12.1

Rmsd from ideal

bond lengths (Å) 0.023

angle distances (Å) 0.058

Ramachandran statistics (%)

favored 90.6

additional 9.4

PDB code 4hgu

aValues for crystal no. 1.
bValues in parentheses are for the highest resolution shell.
cRint =ShklSi|Ii(hkl)2,I(hkl).|/ShklSi Ii(hkl), where Ii(hkl) is the ith measurement of the intensity of reflection hkl and ,I(hkl). is the mean intensity of reflection hkl.
dR =S||Fo|2|Fc||/S|Fo|, where Fo and Fc are the observed and calculated structure factor amplitudes, respectively.
doi:10.1371/journal.pone.0106936.t001

Structure of GmSPI-2 Inhibitor

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e106936



model was performed in COOT [28]. The conjugate-gradient

least-squares refinement in SHELXL [29] was used to refine the

model at the later stages. The main steps of the refinement

included (1) isotropic refinement with manually added water

molecules and sodium ions, (2) anisotropic refinement, (3) addition

of H atoms according to geometrical criteria implemented in

SHELXL, (4) refinement of the occupancies of partially occupied/

alternate conformations and solvent atoms, and finally (5) removal

of the restraints for the well-ordered parts of the model. Six side-

chains, namely Glu1, 8 and 38, Val4, Asp10 and Leu23, as well as

two Ca atoms, of Val4 and Glu38, were modeled with alternate

conformations. Additionally, the Cc, Cd, Oe1 and Oe2 atoms of

Glu36, and the Ce and Nf atoms of Lys15 and Lys18 were given

partial occupancies. The stereochemical restraints were retained

throughout refinement only for these side chains/atoms.

Sodium ions were found in the electron density map and

identified on the basis of coordination number (6) and Na+ ? ? ? O

distances (2.33–2.58 Å), in agreement with the high concentration

of sodium cations in the crystallization solution (1.4 M sodium

citrate). In the final round, all data were used in the refinement,

including the Rfree reflections, leading to the convergence with R
values of 8.62% for the 14133 reflections with Fo.4s(Fo) and

10.57% for all 17179 reflections (Table 1).

At the end of the refinement, one cycle of full-matrix

minimization was calculated with all stereochemical restraints

removed and with all parameter shifts damped to zero, which

permitted the estimation of the standard uncertainties (s.u.) in all

positional parameters. Full refinement statistics are given in

Table 1.

NMR resonance assignment and structure determination
All NMR experiments were performed using an 18.8 T Varian

DirectDrive 800 NMR spectrometer (operating 1H frequency

799.811 MHz). The NMR sample was obtained by diluting a

GmSPI-2 protein sample in 90%/10% H2O/D2O, 20 mM

phosphate buffer pH 4.5, with 50 mM NaCl, to a final

concentration of 0.5 mM. Assignments of 1H, 13C, and 15N

resonances were achieved utilizing standard methods on the basis

of 2D TOCSY and NOESY data [30]. The homonuclear

experiments were supplemented with 2D heteronuclear 1H-15N

and 1H-13C HSQC spectra acquired at natural abundance of 15N

and 13C nuclei. All NMR spectra were referenced using external

DSS (sodium 2,29-dimethyl-2-silapentane-5-sulfonate) [31] and

processed by NMRPipe software [32]. The three-dimensional

structure of the GmSPI-2 protein in solution was solved by

standard 2D NMR techniques on the basis of 503 (141 intra-

residue, 138 sequential, 84 medium, and 140 long range) distance

constraints provided by the analysis of 2D homonuclear 1H-1H

NOESY spectra acquired with 120 ms mixing time. 26 Restraints

for the backbone Q and y torsion angles were defined using the

analysis of chemical shifts with the program TALOS+ [33]. This

procedure provided 58 restraints for the Q and y torsion angles for

29 residues, which were predicted as ‘good’ by TALOS+.

Additionally, 20 distance constraints for 10 hydrogen bonds were

defined as rHN-O = 1.5–2.8 and rN-O = 2.4–3.5 Å (Table 2). 200

structures were calculated by the CYANA (version 3.0) software

[34]. Finally, 17 conformers, selected on the basis of low target

function criteria, were subjected to a refinement procedure in a

water shell using the YASARA program suite [35]. The statistics of

NOE distance restraints together with the analysis of the ensemble

of 17 lower energy structures evaluated on the basis of NMR data

are presented in Table 2.

Results and Discussion

Purification of GmSPI-2 protein for structural studies
The fusion construct designed for the affinity purification/tag

removal approach according to our nickel-based method, contains

the Ni(II)-specific SRHW sequence cloned between the GmSPI-2

target protein and its C-terminal His-tag. Two additional amino

acids, Ala and Pro, were added after the crucial tetrapeptide

sequence as a spacer in order to avoid unwanted interactions

between this sequence and the tag. The purification procedure of

the GmSPI-2-SRHWAP-H6 fusion protein produced in Pichia
pastoris culture, included initial affinity chromatography on Ni-

NTA agarose, followed by HPLC. The latter purification step was

applied in order to assess the amount of the fusion protein for

affinity tag removal, thus enabling a quantitative evaluation of this

novel procedure at the preparative scale of 5–7 mg of protein. The

purified GmSPI-2-SRHWAP-H6 protein was then reloaded on the

Ni-NTA agarose column, and incubated with excess of Ni(II) ions.

The cleavage conditions were based on our recently published

analytical-scale paper [14]. The flow-through fraction collected

contained only the pure GmSPI-2 protein, with the SRHWAP-H6

tag removed, as evidenced by the presence of a single peak on the

HPLC chromatogram of this fraction (Fig. 2). A chromatogram of

the wash buffer fraction indicated that a small amount of GmSPI-2

got stuck to the agarose column. The molecular masses of the

collected peaks confirmed the absence of unspecific cleavage. The

total yield of pure GmSPI-2 was 70% in repeated experiments.

The efficiency of the cleavage reaction was calculated precisely

using the values of HPLC peak areas corresponding to the

substrate and products before and after protein incubation with

Ni(II) ions.

The quality of the crystal structure
The final crystallographic GmSPI-2 model (PDB code 4hgu)

consists of 328 protein-atom sites for 300 non-hydrogen atoms, 92

water molecules and 4 sodium ions. The electron density for all

atoms of the main-chain and fully occupied atoms of side-chains is

exceptionally good. The number of reflections per parameter in

the final cycle of refinement was 4.5, sufficient to justify refinement

without any stereochemical restraints for the well-ordered parts of

the molecule. Despite this radical approach, 90.6% of the residues

are located in the most favored regions and 9.4% in the

additionally allowed regions of the Ramachandran plot [36].

This, together with very good refinement statistics, confirmed that

this refinement approach was correct.

The average value of the atomic displacement parameter (Beq)

for GmSPI-2 is 6.5 Å2. The N/C termini in protein structures are

very often disordered. The pattern of Beq values along the

polypeptide chain shows that the whole main chain is well ordered

(Fig. 3). Especially the residues from 11 to 14 (forming b-strand 1)

and from 19 to 33 (forming b-strand 2 and a-helix) have slightly

lower than average Beq value (with Beq values of 3.53 and 3.75 Å2

for residues 11–14 and 19–33, respectively). The mean Beq values

of the main-chain, side-chain and solvent atoms of GmSPI-2 are

4.8, 8.2 and 12.1 Å2, respectively. There are only two structures of

Kazal-family serine proteinase inhibitors determined at a compa-

rable resolution which are available in the PDB, namely 1r0r at

1.10 Å and 2 gkr at 1.17 Å. The corresponding values of Beq for

those structures are much higher, 16.7, 19.3 and 38.2 Å2 for 1r0r

and 14.4, 17.0 and 32.6 Å2 for 2 gkr, respectively.

The estimated values of s.u. in all positional parameters for the

fully occupied main-chain atoms range from 0.012 Å to 0.033 Å

(Fig. 4). It is evident from Fig. 4 that coordinate errors have

smaller values for ‘heavier’ atoms, e.g. oxygen, and slightly higher

Structure of GmSPI-2 Inhibitor
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for nitrogen and carbon atoms. The s.u. values for the major

conformation of the two main-chain atoms refined in two

conformations are much higher, 0.048 Å for the Ca atom of

Ala4 and 0.054 Å for the Glu38. A similar pattern was observed

for the coordinate errors estimated for the structure of lysozyme

refined at 0.65 Å resolution [37] or BPTI refined at 0.86 Å [38].

The quality of the crystallographic model can also be assessed

using the statistics of the derived geometrical parameters. For

instance, the peptide C = O bond lengths (range from 1.19 to 1.28

Å, with a mean of 1.23 Å) are characterized by standard

uncertainties between 0.01 and 0.03 Å, with a mean of 0.02 Å.

These statistics are almost identical to those reported for squash

trypsin inhibitor (CMTI-I) studied at a comparable resolution of

1.03 Å [39]. However, the model of CMTI-I was refined with the

BUMP and geometrical restraints retained on main-chain

segments with excessive displacement parameters (with Beq.15

Å).

Crystal packing and intermolecular contacts
The GmSPI-2 molecules are densely packed with only 30.2%

volume being occupied by solvent (the corresponding Matthews

coefficient is 1.76 Å3/Da). All other Kazal-family serine proteinase

inhibitors are more loosely packed, with the solvent content

ranging from 31.9% (for N-terminally truncated turkey ovomucoid

third domain, OMTKY3; PDB code 2 gkr) to 54.0% (for infestin

4; 2erw). The GmSPI-2 molecules are more solvent exposed along

the crystallographic b axis (Fig. 5). There are 7 intermolecular

hydrogen bonds, listed in Table 3. Two of them, linking molecules

related by the 21 screw along [001] involve atoms with partial

occupancy. The hydrogen bond involving the Cys24 N atom

should be regarded as week due to an unfavorable angle and the

presence of another hydrogen acceptor from the preceding Asn22

Od1 atom. Besides direct hydrogen bonds, water molecules play a

profound role in mediating intermolecular contacts. An example

of this is the N-terminus where the Glu1 N atom is anchored to

two symmetry related GmSPI-2 molecules by hydrogen bonds

through three well-ordered water molecules 203, 204 and 226 with

B-factors (Å2)/donor-acceptor distances (Å) of 7.30/2.85, 7.99/

2.82 and 6.27/2.70, respectively. Moreover, the first three N-

terminal residues, which in fact are artificial to the native GmSPI-2

sequence, form only indirect intermolecular interactions through

Table 2. NMR restraints and structural statistics for the ensemble of 17 lower energy of GmSPI-2 conformers.

NOESY distance restraintsa 506

intraresidual (|i-j| = 0) 135

sequential (|i-j| = 1) 135

medium-range (1,|i-j| #5) 77

long-range (|i-j|.5) 135

Hydrogen bonds 24

Constraints per residue 13.3

Torsion angle restraints

backbone (Q/y) 26

Structure Z-scores

1-st generation packing quality 20.12561.034

2-nd generation packing quality 4.83661.836

Ramachandran plot appearance 20.92360.405

x1/x2 rotamer normality 22.53860.874

Backbone conformation 0.18960.470

RMS Z-scoresb

bond lengths 1.17460.008

bond angles 0.51360.021

omega angle restraints 0.92960.115

side chain planarity 0.67360.117

improper dihedral distribution 0.87860.099

Ramachandran statisticsc (%)

favored 86.9

additional 13.1

Rmsd from the mean structure

backbone atoms (Å) 0.6360.27

heavy atoms (Å) 0.9660.20

PDB code 2m5x

number of models 17

aNone of the 17 structures has a distance violation of more than 0.2 Å and a dihedral angle violation more than 5u.
bThe quality of the ensemble of 17 lowest-energy structures was checked by PROCHECK-NMR, version 3.4 [48].
cThe ensemble of structures was validated by the WhatIf program [49].
doi:10.1371/journal.pone.0106936.t002
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Figure 2. Preparative HPLC chromatograms of protein samples after 19 h of incubation at 506C. Incubation buffer (top) and wash buffer
(bottom). The peak labels denote the reaction substrate and products, identified using ESI-MS: P, pure GmSPI-2 protein (4310 Da); T, the SRHWAP-H6

peptide (the extended His-tag, which is the C-terminal hydrolysis product, 1574 Da); S, substrate (fusion protein, 5868 Da).
doi:10.1371/journal.pone.0106936.g002

Figure 3. Plot of Beq averaged over main-chain (green) and side-chain (orange) atoms of the crystallographic model. Values of zero in
the lower plot correspond to glycines.
doi:10.1371/journal.pone.0106936.g003
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water molecules and a sodium ion. The first direct intermolecular

hydrogen bond is made by the Val4 O atom (Table 3).

The crystal structure includes four partially occupied sodium

ions. Two of them, namely Na101 and Na102 have complete

octahedral coordination spheres. The coordination number of

Na103 and Na104 is 5 and 4, respectively. These sodium ions are

coordinated by oxygen atoms belonging to the GmSPI-2 molecule

(Thr7 Oc1, Asp16 O and Asp34 O and Od1), as well as by water

molecules. It has not escaped our notice that two sodium ions,

namely Na103 and symmetry related Na104 (2x, K+y, K2z),

are 3.14 Å apart sharing two symmetry related water molecules

257 and 258 (2x, K+y, K2z) in their coordination spheres.

Similar arrangement is often found in small molecule structures. In

the structure of catena-(hexakis(m2-Aqua)-di-sodium 2,5-dibenzoyl-

terephthalate tetrahydrate) (CSD reference code HAYQUU) [40]

Na1 and Na2 ions are 3.14 Å apart and share three water

molecules (O4, O5 and O6) in their coordination spheres.

Description of the GmSPI2 structure
The overall structure of GmSPI-2 (Fig. 6A) resembles that of

other Kazal-family serine proteinase inhibitors. Residues Val12-

Gly14, Thr19-Tyr20 and Leu33-Glu36 form an anti-parallel b-

sheet while residues Leu23-Ala29 form the central a-helix of the

characteristic Kazal-family serine proteinase inhibitor b2ab fold.

GmSPI-2 shows, however, features of non-classical Kazal-family

serine proteinase inhibitors, harboring an unusual pattern of

Figure 4. Coordinate errors for main-chain atoms estimated from the inversion of the least-squares matrix. For dual-occupancy atoms,
only the major component is plotted.
doi:10.1371/journal.pone.0106936.g004

Table 3. Direct protein-protein intermolecular hydrogen bonds in the GmSPI2 crystal structure.

No Residue, atom Residue, atom
Distance
(Å)

1 Val4, O Gly32(a), N 2.83

2 Thr6, N Gly30(a), O 2.90

3 Cys24, N Ala29(a), O 3.06

4 Ser21, N Leu40(b), OXT 2.77

5 Ser21, Oc Leu40(b), O 2.58

6 Glu8, Oe2 Lys15(c), Nf 2.42

7 Asn27, Nd2 Glu38(c), Oe1 3.07

(a)x +K, 2y + K, 2z.
(b)2x, y + K, 2z+K.
(c)2x+K, 2y, z+K.
doi:10.1371/journal.pone.0106936.t003
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disulfide bridges. Only two intradomain disulfide bridges formed

between Cys residues 5 and 24 and Cys residues 13 and 39 are

present. GmSPI-2 has been classified as a non-classical Kazal-

family serine proteinase inhibitor group 1 [41]. This group of

inhibitors is characterized by the shift of the first and the fifth half-

cystine residues towards the C-terminus with respect to classical

Kazal-family serine proteinase inhibitors [42]. A superposition of

the X-ray structure of GmSPI-2 with a classical Kazal-family

serine proteinase inhibitor (OMTKY3, 2 gkr), a group 1 non-

classical Kazal-family serine proteinase inhibitor (CrSPI-1-D1,

3pis) and a group 2 non-classical Kazal-family serine proteinase

inhibitor (LDTI, 1an1) shows that it resembles the structure of

LDTI (Fig. 7) with a root-mean-square deviation (rmsd) of 0.92 Å

for 37 superimposed Ca atoms [43]. CrSPI-1-D1 like GmSPI-2 has

only two disulfide bridges. Both structures are similar up to Asp34

of GmSPI-2, but very different from there, till the very C-terminus.

Residues Trp34-Cys37 of CrSPI-1-D1 form a 310-helix, which is

not present in the structure of GmSPI-2.

The fully exposed reactive site loop (RSL) of the inhibitor

presents the P1 site with the Thr7 residue. The size of the GmSPI-

2 RSL is typical for Kazal-family serine proteinase inhibitors, with

seven amino acids between Cys5 and Cys13. It is generally

thought that the rigidity of the RSL together with its specific

sequence are the key factors conferring high potency on Kazal-

family serine proteinase inhibitors [41]. There are usually eight

hydrogen bonds stabilizing the RSL of Kazal-family serine

proteinase inhibitors [25,44]. The GmSPI-2 RSL has an additional

strong (2.86 Å) hydrogen bond stabilizing the RSL between Thr6

(O) and Trp25 (Ne). Amongst Kazal-family serine proteinase

inhibitors a tryptophan residue in this position is present only in

GmSPI-2 [45].

The His-tag cleavage site was located between Leu40, and

Ser41 of the fusion protein. The 2Fo-Fc electron density map for

Leu40 is excellent for both the main-chain and side-chain atoms

including the C-terminal oxygen atoms O and OXT (Fig. 8). The

C-terminus is anchored by three strong hydrogen bonds involving

both carboxylic oxygen atoms. Two of them are listed in Table 3.

The third one involves the Leu40 OXT and Wat209 (x, y-1, z)

atoms. This further confirms the sequence specificity of the

presented tag cleavage procedure.

The structure of the GmSPI-2 protein in solution
determined by nmr spectroscopy

The three-dimensional structure of GmSPI-2 in solution was

determined by NMR spectroscopy using 503 distance constraints

derived from the analysis of 2D 1H-1H NOESY data sets. The

ensemble of 17 lowest-energy structures (PDB code 2m5x) selected

from a total of 200 calculated models is characterized by good

convergence and low rmsd from ideal geometry (Table 2). The

NMR-evaluated 3D structure is similar to that determined by X-

ray crystallography, and contains the same a (Leu23-Ala29) and b
(Val12-Gly14, Thr1-Tyr20, Leu33-Glu36) elements folded into

the b2ab motif of the hydrophobic core of the protein (Fig. 6B). A

least-squares superposition of the 34 Ca atoms of the Cys5-Glu38

segment of the crystallographic model and the NMR conformer

11, representing the NMR ensemble, is characterized by an rmsd

of 0.89 Å. Upon detailed inspection, the indole group of Trp25

and the imidazole ring of His35 are found to be in different

orientations in the two models. Specifically, the x2 torsion angle of

Figure 5. Crystal packing of GmSPI-2 molecules viewed down the crystallographic b axis.
doi:10.1371/journal.pone.0106936.g005
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Trp25 differs by 30u between the X-ray and NMR structures. In

effect, the Trp25 Ne? ? ?Thr6 O hydrogen bond observed in the

crystal structure is not present in solution. Likewise, the His35

Hd1? ? ? Glu36 O hydrogen bond is broken in solution due to

reorientation of the His35 ring from x1 of 240u (gauche2) to +60u
(gauche+). Some minor conformational differences observed at the

N-termini can be attributed to crystallographic packing.

Methodological remarks
The applicability of our method is based on the assumption that

Ni(II) ions can interact with -SRHW-like sequences only at solvent

exposed tags. Otherwise we would be posed with unspecific

protein cleavage by Ni(II) ions. In previous study we verified the

crucial assumption that Ni(II) ions would not be able to penetrate

protein interiors or distort secondary structure elements using

human ubiquitin. This protein naturally possesses the potentially

active Thr-Leu-His-Leu sequence. However, despite prolonged

incubations in the presence of Ni(II) ions at elevated temperatures

no cleavage was observed for the natively folded protein, while Ubi

denaturated by GuHCl was hydrolyzed [14].

The results obtained by X-ray crystallography and NMR

spectroscopy consistently demonstrate that the molecular structure

of GmSPI-2 is highly similar in solution and in the crystalline state.

However, several small differences could be still detected. For

instance, the exact conformation of the two disulfide bridges could

not be unambiguously determined from the NMR data due to

insufficient concentration of the GmSPI-2 protein in solution. The

conformation of the first four N-terminal residues is different in the

two structures as a result of crystal packing interactions, i.e.
absence of intermolecular hydrogen bonds in solution.

His-tag and other small affinity tags are routinely used to obtain

pure recombinant proteins, and structural studies in solution are

often conducted without tag removal. This is, however, often

impossible in the solid state because the crystal packing can lead to

non-native interactions between the tag and the rest of the

molecule. Therefore, the quality of X-ray data strongly depends

on the homogeneity of the protein material, that is on the efficacy

of the tag removal procedure and on the absence of non-specific

cleavage products, which are usually generated by proteolytic

enzymes. In this perspective, the high resolution of the X-ray

diffraction data obtained in this work can be related to the truly

perfect removal of the affinity tag afforded by the nickel-based

methodology. Furthermore, the high yield of this method on the

preparative scale (conversion of 70% of the starting material to the

final product, with 100% homogeneity) makes it a good tool for

obtaining pure thermostable proteins for structural studies.

The short GmSPI-2 gene is a promising target for mutagenesis

directed toward engineering novel variants of the protein, specific

for selected serine proteinases (study in progress). Such a study

must be based on the precise knowledge of the starting polypeptide

structure. Only with such knowledge one can carry out rational

modeling and docking studies of GmSPI-2 derivatives to identify

suitable hits for overexpression and activity evaluation. A clear

understanding of the relation between the polypeptide structures

in the crystal and in solution is also a prerequisite for the validity of

such an approach. In this perspective, the accurate structure of this

unique polypeptide belonging to non-classical Kazal-family serine

proteinase inhibitors, by two methods, has to be regarded as

setting the stage for further studies. It is worth mentioning that in a

set of biologically interesting proteins, short domains with varying

Figure 6. The overall X-ray (A) and NMR (B) models of GmSPI-2. (A) b-stands and disulfides are shown in yellow, a-helix in red and loops in
green. (B) The ensemble of 17 lowest energy conformers are shown in different colors, with disulfides in yellow. The figure was prepared using PyMOL
[47].
doi:10.1371/journal.pone.0106936.g006

Figure 7. Stereo Ca tracing of the crystallographic model of GmSPI-2 (yellow) superimposed with the NMR structure of GmSPI-2 in
solution (conformer 11, magenta), CrSPI-1-D1 (red, PDB code 3pis), OMTKY3 (blue, 2 gkr) and LDTI (green, 1an1). The superposition
was calculated in Coot (Emsley & Cowtan, 2004) using the SSM algorithm and displayed in PyMOL [47].
doi:10.1371/journal.pone.0106936.g007
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homology to GmSPI-2 seem to be frequently present at either the

N- or the C-terminus (Kaczanowski & Zagórski, unpublished).

Prediction of the probable function of such domains will be

facilitated by the present results, which have defined the structural

properties of a bona-fide inhibitor.

Conclusions

In the present study, the GmSPI-2 protein sequence was

extended C-terminally by an -SRHWAP-H6 dodecapeptide,

which comprises the underlined Ni(II)-sensitive tetrapeptide linked

to the His-tag domain. The fusion protein was expressed in Pichia
pastoris and affinity purified on Ni-NTA columns. The cleavage of

the tag directly on the Ni-NTA column enabled us to combine the

affinity purification and the tag removal into one step. The

GmSPI-2 protein obtained in flow-through fractions exhibited

100% homogeneity. The absolute sequence specificity of the

cleavage, observed previously in analytical scale purifications, has

been preserved on the preparative scale as well. No protein

impurities whatsoever could be detected in the protein fractions

tested by HPLC and ESI-MS. The efficiency of cleavage was 70%

on the preparative scale. The resulting GmSPI-2 protein was fully

active. The results obtained by X-ray crystallography and NMR

spectroscopy show that the structure of GmSPI-2 is highly similar

in solution and in the crystalline state. The resolution of the crystal

structure of 0.98 Å is the highest for the Kazal-type serine protease

inhibitors deposited in the PDB. The number of reflections per

parameter justified refinement without any stereochemical re-

straints for the well-ordered parts of the inhibitor. The refinement

converged with R = 10.57% for all reflections. One cycle of full-

matrix minimization permitted the estimation of the standard

uncertainties in all positional parameters which, for example, for

the fully occupied main-chain atoms range from 0.012 Å to 0.033

Å. The 2Fo-Fc electron density map for Leu40, the last residue of

the mature inhibitor, is excellent for both the main-chain and side-

chain atoms including the C-terminal oxygen atoms O and OXT.

This clearly confirms the sequence specificity of the presented tag

cleavage procedure.

These exceptionally high grade of the protein purification

product was reflected in the high quality of the structural

determinations, both in the solid state and in solution. The high

resolution of these structures was certainly facilitated by the perfect

homogeneity of the protein sample after affinity tag removal.
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(2010) Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein

engineering. Combinatorial library determination of optimal sequences. J Am

Chem Soc 132: 3355–3366.
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