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Reviewer #1:  

 The manuscript titled to "The TFE-induced transient native-like structure of intrinsically disordered σ704 

domain of Escherichia coli RNA polymerase." reports the authors' finding that the σ704 domain of E. coli RNA 

polymerase (rECσ704) adopts partially-folded α-helical structures in 30% TFE. By employing CD and NMR 

spectroscopic techniques, the authors show that 30% TFE maximizes the native-like transient conformation of 

rECσ704, and at this condition, they were able to characterize dynamic behaviors of this protein and obtain 

structural models in solution. The determined structural models are comparable with recent X-ray crystallographic 

structures of E. coli RNA polymerase in its holo-state (Murakami 2013).  

 The authors reported in their previous publications (e.g. Poznanski et al. 2003, and Kaczka et al. 2009) 

that rECσ704 contains a significant amount of helical structures in its unfolded state or in the condition containing 

10% TFE. The current manuscript follows up these previous studies by focusing on the structural and dynamic 

properties of rECσ704 in 30% TFE. The work is of interest in that it provides evidence that the conformation of 

rECσ704 at more physiological condition could be similar to the one observed here with 30% TFE, and in that it 

presents the plausible solution structural models of rECσ704. However, the manuscript writing should be improved 

significantly, correcting numerous errors.  

 

A few other issues that need to be addressed before publication: 

 

1. It appears that the figures S1 and S2 provide evidence suggesting that the conformation observed with 30% 

TFE is similar to the one observed at more physiological pH. However, detailed discussion regarding this 

observation is lacking.  

A) For example, would it be possible to compare the α-helical contents at two conditions (i.e. 30% TFE vs. 

100 mM NDSB at neutral pH)?  

 

J.P. discussed and  appropriate table inserted in supplementary materials. 

  

s.s. element 
200-260 nm 205-260 nm 210-260 nm consensus 

TFE NDSB TFE NDSB TFE NDSB TFE NDSB 

Helix 35.3% 34.2% 37.1% 39.2% 35.5% 36.3% 36.0 (1.0)% 36.6 (2.5)% 

Antiparallel 8.0% 8.6% 7.1% 6.7% 7.6% 7.5% 7.6 (0.5)% 7.6 (1.0)% 

Parallel 8.1% 7.9% 8.0% 7.5% 8.2% 8.0% 8.1 (0.1)% 7.8 (0.3)% 

Beta-Turn 16.5% 17.0% 16.1% 15.8% 16.4% 16.3% 16.3 (0.2)% 16.4 (0.6)% 

Rndm. Coil 30.5% 28.9% 30.7% 29.2% 31.7% 31.2% 31.0 (0.6)% 29.8 (1.3)% 

Total Sum 98.4% 96.5% 99.0% 98.5% 99.4% 99.3% 98.9 (0.5)% 98.1 (1.4)% 

 

B) What could be the cause for pH-dependent spectral changes of rECσ704 (particularly at higher pH)?  

J.P. explained in the text as follows 

This phenomenon should be directly addressed to the dissociation of Asp and Glu side-chain carboxyl groups 

at pH above 5. Dissociation of Asp and Glu side-chains enables formation of numerous intra- and 

intermolecular salt bridges that compete with hydrophobic interactions. This destroys a hydrophobic core of 

the transiently-folded protein, and the exposition of hydrophobic residues towards solvent results in intensive 

aggregation. 

 

C) Also, please note that information regarding the sample concentration for CD is lacking (except for figure 

S2B).  

J.P. explained: All the spectra were recorded for ~1.5μM protein solution under a nitrogen atmosphere, using a 

10 mm path-length quartz cell. Exact protein concentration was determined for each sample basing on UV 

absorption at 274 nm (ε = 1400 M
-1

·cm
-1

).  

 

2. According to the references cited for interpretation of R1xR2 product (Kneller et al. 2002 and Jaremko et al. 

2014), any contribution from Rex would result in increasing R1xR2 product. However, the paragraph at the 

lines 28-37 of page 8 claimed that the decrease in R1xR2 product is caused by exchange process. Could the 

authors give more detailed explanation for this discrepancy?  

J.P. This was reinterpreted in the terms of R2/R1, which seems to be more appropriate for unfolded 

proteins. The "exchange" above was an error; it should be that low R1*R2 indicates residues with fast 

motion 
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3. The authors provided the RMSD difference between their structural models and the structures of T. maritime 

TM σA4. However, they did not quantify how different their structural models are from the crystal structure of 

E. coli RNAP holoenzyme, which was actually compared with the determined structures at figure 4. 

 

J.P. corrected: New figure 4, now with both reference structures . RMSD to both structures is below 2.0A. 

 

 

 

4. Along with other minor errors that should be fixed, please check the following issues:  

a. The caption for figure 4 states that the panel C shows the superposition of the solution structure with the 

published crystal structure of E. coli rECσ704. But, the first paragraph of the discussion section says that 

"In order to check to what extent the TFE-induced solution structure of rECσ704 resembles that of the 

homologous Thermotoga maritima TM σA4 (Lambert et al. 2004), the most stable regions formed by the 

H1 and H3 helices of these two structures were compared (Figure 4)." This might confuse the reader which 

structures are indeed overlapped at figure 4. 

b. At the 10th page line 36-37, the authors says "(see dis@30 vs. dis@20, dis@20 vs. dis@0, and ord@30 vs. 

ord@20 in Table III)". But, in table 3, there is no 'dis@20' or 'ord@20'.  

c. At the table 2, the reviewer believes that the unit for τf is 'ps', not 'ns'. Similar errors exist at the table 3 (the 

unit for τf) and at the figure 3 (the units for τs and τf). 

d. Figure 3 and 4 do not have labeling for their panels. And, the caption for figure 3 does not explain what the 

black bar above each gray square represents.  

e. A reference error at the caption of the figure S3. 

 

J.P. corrected.  
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Reviewer #2:  

 The authors submit a manuscript closely following their previous study published in Proteins [Kaczka et 

al, Proteins 78 (2010) 754-768]. Both papers demonstrate formation of a native-like structure of an intrinsically 

disordered protein (IDP) due to the presence of trifluoroethanol (TFE), a fact that is not surprising, but worthy of 

biophysical characterization. The only substantial difference between the papers is the increased concentration of 

TFE to 30 % in the current study (only 10% TFE was used in the previous paper). Therefore, the authors should 

provide a strong argument that the mentioned difference provides a qualitatively new insight if they want to 

present their data as a novel and original scientific result. I am afraid that the current version of the manuscript fails 

to provide such an argument (i) because an explicit comparison of both papers is missing, (ii) NMR relaxation 

analysis is not presented in a clear format, and (iii) the manuscript contains typos/inconsistencies and errors that 

obscure the results. As the quality of the experimental data and computational protocols seems to meet the 

standards, I believe that the study can be published, but only if the authors make a major revision of the manuscript 

and if they succeed to prove that the new results carry a qualitatively new "added value" compared to their 

previous report. 

Major issues: 

1. Analysis of the 15N relaxation data is not described well and important bits of information are missing: It is 

not described how the Rex contribution at different magnetic fields is treated in the analysis (proportional to 

B^2?). References to important statistical procedures are completely missing (F-test, Anderson-Darling test) 

and the procedures are not described in the text. As these issues are treated properly in the previous paper 

[Kaczka 2010], where they are described in a clear and detailed manner both in Results and Methods, I 

recommend to follow the style of the previous article. The approach to the 15N relaxation analysis differs 

substantially from the previous paper but it is not described why. The Clore's extended model-free formalism 

was found inappropriate in the previous study but is used in the current manuscript. The reduced spectral 

density mapping was performed in the previous study but is missing in the current manuscript. The authors 

should include the spectral density mapping and clearly explain reasons of using different approaches in the 

analysis. 

 

J.P. We have reanalyzed all data, starting from manual correction of peak location in the spectra through 

spectral density mapping up to more appropriate statistical analyses. Now, we follow the methods used in  

Kaczka paper, so the results could be easily compared. The usage of Clore's extended model-free formalism 

was found applicable only for the His-tag and linker residues, for which an overall correlation time was 

fixed at 11.5ns (median estimated for HLHTH motif). But usage of overall correlation time for so weakly 

folded protein is debatable. Consequently we remove this extension, and followed the previously used 

approach.  

 

2. The purpose of including the R1*R2 analysis is not clear. The method has been proposed to distinguish effects 

of Rex and motional anisotropy in relatively large, well unfolded proteins with sufficiently long correlation 

times (tau >> omega). Under such circumstances, R1*R2 is almost independent of tau, being approximately 

proportional to S^4/omega^2. In disordered proteins/protein regions, the condition tau >> omega is clearly not 

fulfilled; reference to Kneller et al on p. 8, l. 25 is not relevant in this context. This issue should be discussed 

in a clear way (do the authors consider only data for relatively ordered central domain?). It should be 

explained why the variations of R1*R2 in the well-ordered region are much larger than those reported in the 

literature [Kneller et al. JACS 2002, Jaremko et al. J. Struct. Biol. 2014]. Interpretation of the R1*R2 analysis 

is confusing (and inconsistent with the model-free analysis of the same data!). Exchange INCREASES R2 

(and consequently R1*R2), low R2 and NOE (and R1*R2, p.8 l.32) shows fast internal dynamics, not 

exchange (Rex). The highest Rex values are not identified in the same region by the model-free analysis (Fig. 

3E), but for residues exhibiting highest R1*R2. Either exchange (Rex) is confused with fast dynamics (S^2, 

tau) in the manuscript, or a wrong conclusion is made. 

J.P. We must agree that the usage of R1*R2 was not supported. We move back to the analysis of field-

dependence of J(0), and also presented R2/R1 as an alternative approach. Some of above disagreements 

came from extreme instability of fitting procedure, results of which strongly depended on initial values 

of S2, T_local and T_e. The previously used three parameter model (Kaczka in Proteins) was found 

reasonable, but even its extension for Rex contribution makes results "flexible". So we decide to 

mention for which residues Rex may contribute to transverse relaxation.  

 

3. The Rex values (provided by the model-free analysis) are plotted in Fig. 3E, but not discussed in detail. The 

authors should make clear which Rex values they consider significant and why their conclusion differs from 

the previous paper [Kaczka 2010], where "the exchange phenomena were judged negligible for all residues of 

the protein". Does the protein behaves differently on the us-ms time scale in 30% TFE, or did the higher field 
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provide higher sensitivity that allowed the authors to observe Rex values that were below the detection limit in 

the previous study? 

 

J.P. The appropriate test (proposed in 1852) has been applied, and four residues were identified as these 

experiencing slow motions. Location of two agrees with turn region in HLHTH motif, while two others are 

most probably involved in folding-unfolding equilibrium 

 

4. The average order parameter (S^2) for 30% TFE in Table II does not agree with the values plotted in Fig. 3A. 

This is an extremely important issue! Does the higher TFE concentration increase the backbone rigidity 

dramatically (Fig. 3A) in spite of the only moderately higher helical propensity (Fig. 1a), or is the S^2 increase 

also marginal (from 0.32 to 0.36, Tab. 2)? Also, the τf average for 30% TFE in Tab. 2 seems to be lower than 

the values plotted in Figure As mentioned above, the effects of higher TFE concentration should be directly 

compared to the results of the previous study [Kaczka 2010] in Discussion. 

 

J.P. All these are corrected. The increase in S2 is significant, as tested by non-parametric K-W test.  All the 

analyses were done again.  The relaxation data do agree with those presented in the figures. Statistical 

methods used enable comparison of non-Gaussian distributions (Table3) 

 

Minor issues: 

 

Description of the model-free analysis in MATERIALS AND METHODS is somewhat difficult to follow (Eqs. 

2A-2C). The Rex terms are mentioned in text but do not appear in equations. J.P. Corrected 

 

This section can be improved by listing all used model-free models explicitly, like e.g. in Mandel et al., J. Mol. 

Biol. 246 (1995) 144-163.  

 

J.P. Only the simplest model is used now, application of more advanced generally failed.  The only method is 

to apply a set of correlation times for T_local attributed a priori to selected protein regions, as it was 

originally proposed by Buck and al for Lysozyme in TFE/water binary solvent (J. Mol Biol. 1996).   

 

Including the Clore's extended model, the notation used by the authors is a bit confusing because the symbol tau_s 

is used for a different correlation time than in the original paper [Clore et al, JACS 112 (1990) 4991-4993].  

J.P. Now they are t_local (against tm) and t_e (as originally) 

 

It would be interesting to see how the "full extended model" (Eq. 2 in [Clore et al, JACS 112 (1990) 4991-4993]) 

performs on the relatively large set of experimental data. 

J.P. This model converges only when we have restricted T_local values. Otherwise the strong correlation 

between Ss and T_local makes results enormously biased. 

 

The prediction of the helical content by the authors is convincing, but it would be interesting to compare it to 

results of other software  (e.g. d2d by M. Vendruscolo). 

J.P. Done, inclided in the text and agrees with other CSI analyses.  

 

1. p. 8, l. 42 "chemical data" should be "chemical shift data" 

J.P. corrected 

2. p.10, l.9 "reaching maximum of its variance" - were higher TFE concentrations tested?  

J.P. Up to 35%. Now presented in Supplementary Figure S3. 

3.  p.10, l.36 "dis@20" - not in Table III ! 

J.P. It should be dis@10. Now rewritten. 

4. It should be mentioned explicitly that the cumulative tau plot contains only values obtained at 30% TFE. 

J.P. Now distributions of S2, T_local and t_e are shown for all TFE concentrations. And discussed. 

5. p. 17, l. 12 "Horizontal bars represent estimates the experimental error" should be "Vertical..."  

J.P. correected. 

6. Fig. 3 "[ps]" should be "[ns]". Also, the labels should be placed at the axes as typical. The horizontal axis 

(showing residue #) should be labeled as well. 

J.P. Corrected. 

7. Why are the gray strips identifying helical regions different in Fig. 2 and Fig. 3?  

J.P. strips were put manually, now carefully updated.  

8. Check for typos throughout the manuscript, especially in the Figure legends ("stripes", "aoorich") 

J.P. Checked several times. 
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ABSTRACT 

The transient folding of the domain 4 of a E. coli RNA polymerase σ
70

 subunit (rECσ
70

4) 

induced by an increasing concentration of 2,2,2-trifluoroethanol (TFE) in an aqueous solution was 

monitored by means of CD and heteronuclear NMR spectroscopy. NMR data, collected at a 30% 

TFE, allowed the estimation of the population of a locally-folded rECσ
70

4 structure (CSI 

descriptors), and of local backbone dynamics (
15

N relaxation). The spontaneous organization of the 

helical regions of the initially-unfolded protein into a TFE-induced 3D-structure was revealed from 

structural constraints deduced from 
15

N- and 
13

C-edited NOESY spectra. In accordance with all the 

applied criteria, three highly populated α-helical regions, separated by much more flexible 

fragments, form a transient HLHTH motif resembling these found in PDB structures resolved for 

homologous proteins. All the data taken together demonstrate that TFE induces a transient native-

like structure in the intrinsically disordered protein.  

 

Keywords: Intrinsically disordered proteins; TFE-induced folding; NMR; 15N relaxation; sigma-

70; HLHTH motif 

Manuscript
Click here to download Manuscript: EBJ-140731f.doc 
Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/ebjo/download.aspx?id=37074&guid=0114de4c-d649-4251-9740-a9e19da478fe&scheme=1
http://www.editorialmanager.com/ebjo/viewRCResults.aspx?pdf=1&docID=2110&rev=1&fileID=37074&msid={78265FB8-DAD4-434A-9C56-ECFD61A49D9A}


 

2 

INTRODUCTION 

Intrinsically disordered proteins (IDPs) are involved in the essential processes of the living cell (1). Their 

sequences are generally enriched in polar and charged residues, but deficient of hydrophobic groups (2-4). Free IDPs in 

a solution are highly flexible, and do not display stable a secondary/tertiary structure (5, 6). Under physiological 

conditions IDPs are sampling a large conformational space, and some of conformers, called a transient secondary 

structure, may resemble structured elements (7). In order to access the relationship between the structural dynamics of 

IDPs and the function, a continuum of thermodynamically accessible states have to be characterized in terms of both 

conformational free energy, and inter-conversion timescales. Hence, a global and/or local flexibility provides the 

structural plasticity of IDPs, facilitating specific interactions with various partners (8), albeit the thermodynamics of 

partner-induced IDP folding must be linked directly to the intrinsic conformational properties (2-4, 9). IDPs, among 

other, are prominently represented in proteins associated with mRNA processing (10, 11), apoptosis (12), signal 

transduction (13, 14) or transcription regulation (6, 7, 15-17).  

In bacteria, two forms of RNA polymerase (RNAP), called holoenzyme (composed of α2ββ’ωσ subunits of a 

total weight of ~450kDa), and core (composed of α2ββ’ω subunits; ~400kDa), are capable of transcribing DNA, but 

only the holoenzyme initiates transcription solely at promoter sites. The identification of σ-factor as a dissociable RNA 

polymerase subunit (18) suggested that RNA polymerase may recruit other σ-factors to switch on particular regulons 

(19). There are seven different σ subunits identified in Escherichia coli (20), each binding to the same core RNAP 

enzyme, and, thereby, directing the transcription of a specific ensemble of genes. The actual model of bacterial 

transcription assumes a competition of sigma subunits for the limited amount of the core RNAP that it can be bound to 

(20-22). In case of vegetative cell growth, σ70 predominates at a concentration exceeding that of the core RNAP (21, 

23), and displaying the highest affinity of all sigma proteins to the core RNAP (20) contributes in the transcription of 

70% of the operons (24).  

In a solution, free σ70-subunit does not bind to promoter DNA due to a direct intramolecular interactions 

between N-terminal segment (region 1.1) and DNA-recognizing motifs located in the C-terminal part of the molecule 

(regions 3.2 and 4.2) (25). The primary sigma factor of Escherichia coli RNA polymerase (ECσ70) is a 613-residue 

protein of 70 kDa, belonging to the large family of sigma factors composed of four strongly conserved domains (24). 

Its regions (2.4 and 4.2) specifically recognize the promoter sequences of expressed genes, located 10 and 35 bp 

upstream from the transcription initiation site, respectively. Some parts of the 4.2 region have also been identified as 

targets for transcription-activating or anti-sigma factors (26-28). Free σ70 in a solution must be regarded as carrying 

intrinsically disordered segments, as indicated by solution NMR studies on the segmental isotopic labeling of the 

isolated region 4.2 of ECσ70
4 (25); this conclusion seems to be supported by the absence of a crystal structure of the free 

form of sigma subunit, with the only exception of the solution structure of Thermotoga maritime σA factor (TM σA) 

(27).  

At the moment, only two solution structures of ECσ70
4 in complex with T4 AsiA (record 1TLH) (27) and E. 

coli regulator Rsd (2P7V) (28) are accessible in the Protein Data Bank. There is the known crystal structure of ECσ70
4 

in complex with a DNA-promoter fragment (3T72) (29), and the structure of whole σ70 in RNAP holoenzyme of E. coli 

(4IGC) (30), as well as its complexes with small-mass ligands (4KN7, 4KN4, 4KMU and 4JK2, 4JK1) (31, 32). There 

are also the structures of homologous domains from thermophilic bacteria (27, 33, 34). However, there is still no 

structural data concerning free ECσ70 in solution. 
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For our part, we have demonstrated that the population of secondary structure elements was substantially 

increased for rECσ70
4 in the presence of TFE (35). This generally agrees with the idea that TFE induces the closure of 

individual hydrogen bonds (36), and thus propagates the context-dependent formation of native-like secondary 

structures in polypeptides (37). Subsequently, we have monitored the TFE-induced conformational changes of rECσ70
4 

with the aid of NMR spectroscopy (38). The drift of resonance signals in the 1H-15N HSQC spectra indicated that in a 

mixed water-TFE solution a non-specific uniform build-up of helical structures takes place for a THE content smaller 

than 10% (v/v). However, for a TFE content exceeding 10%, non-monotonic changes were observed for numerous 

residues located either in the linker between domains: 3 and 4, or in the regions separating helical structures in the 

putative HLHTH motif (helix-loop-helix-turn-helix), namely G564-Y571 (L) and D581-T583 (T) (see PDB record  

4igc). It supports the stating that at higher TFE concentrations, rECσ70
4 would tend to fold in a transient native-like 3D 

structure found in the crystal structure of the E. coli RNAP whole holoenzyme (30). Yet, does ECσ70
4 in a solution 

resemble a sigma factor from E. coli RNAP much more than the homologous domains of Thermus aquaticus (34) and 

Thermus thermophilus (39), or the solution structure of Thermotoga maritime (27), and that of a distant one, σ54
4 from 

Axuifex aeolicus (2ahq) (40)? In this work, on the basis of further CD and NMR studies we show a low-resolution 

model of E. coli σ70
4 fold induced by a 30% TFE, and we analyze internal motions of the protein backbone with the use 

of 15N relaxation.  

 

MATERIALS AND METHODS  

Materials. The preparation of the recombinant ECσ70
4 fragment, rECσ70

4, (86 C-terminal residues of the E. coli σ70 

preceded by 21-aa segment carrying His6-Tag) was described previously (41). The protein was found to be chemically 

stable for a prolonged time both in aqueous acidic, and in mixed aqueous/TFE solutions.  

CD Spectroscopy. Circular dichroism spectra were recorded on a Jasco J-815 spectropolarimeter equipped with a 

Peltier thermostatic cell holder. All the spectra were recorded for ~1.5μM protein solution under a nitrogen atmosphere, 

using a 10 mm path-length quartz cell. Exact protein concentration was determined for each sample basing on UV 

absorption at 274 nm (ε = 1400 M-1·cm-1). Each CD spectrum was measured three times at 25ºC in the range of 195-270 

nm. The contribution of the secondary structure elements were estimated with the aid of the CDNN program (42).  

NMR Spectroscopy. 2.5 mM protein samples were prepared in a 30% (v/v) TFE/water binary system (10% D2O) at 

pH 4.6. All rECσ70
4 NMR spectra were collected at 298K either on Varian Unity Plus 500 or Varian VNMRS 800 

spectrometers, processed with the aid of NMRPipe (43) and analyzed, using SPARKY (44). Prior to the Fourier 

transformation, resolutions in indirect dimensions were increased by π/3 shifted squared sine-bell weight function, 

followed by zero- filling. The zero-order baseline correction was applied in all dimensions. 13C and amide 1H and 15N 

resonances were assigned, using a combination of HNCBCA (45), CBCA(CO)NH (46) and C(CO)NH (47) 

experiments. Additional HNHA (48) and HAHB(CO)NH (49) spectra enabled the assignment of the Hα and Hβ 

signals, while most of the remaining 1H aliphatic side-chain resonances were assigned, using H(C)(CO)NH spectrum 

(50). Carbonyl 13C resonances were assigned using the combination of HNCO (51) and HN(CA)CO (52) spectra. To 

overcome a problem with strong resonances overlapping, sequence-specific assignments were additionally confirmed 

by the inspection of sequential contacts identified in 15N-edited 3D-NOESY spectra. The assignments have been 

deposited in BMRB (Entry 15975).  

Chemical shift analysis. Secondary chemical shifts, Δδ(i), were calculated for 13Cα, 13CO and 1Hα nuclei according to 

the reference values for random-coil chemical shifts corrected for sequence-dependent contributions (53). The 
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population of helically folded regions in rECσ70
4 was then evaluated, according to the concept of the chemical shift 

index (CSI) (54). The helical population of individual residues, pα(i), was estimated as the ratio of Δδ(i)/Δδo(i), where 

the reference values of secondary chemical shifts, Δδo(i), were assumed to 2.8, 2.3 and -0.4 ppm for 13Cα, 13CO and 

1Hα, respectively (54, 55). In view of the consistency of the Δδ(i) distribution pattern for 13Cα, 13CO and 1Hα, the 

consensus local propensities towards a helical structure were expressed as the geometric average of the three 

descriptors referred to above (38). The population of helical structures were additionally estimated on δ2D server (56), 

algorithm of which is based on the larger set of chemical shift data (1Hα, 13Cα, 13Cβ, 13CO, N and HN) (57). The protein 

backbone φ and ψ angles, and the square of the order parameter for the backbone amides, S2, were additionally 

estimated with the aid of TALOS+ (58).  

15
N relaxation data. Relaxation parameters were measured at 298K for a uniformly 15N-labelled protein sample 

dissolved in a mixed aqueous solution with 30% TFE content (pH 4.6) on Varian UnityPlus 500, Varian VNMRS 600 

and Varian VNMRS 800 spectrometers at 11.4, 14.1 and 18.7 T, respectively. The pulse sequences used for the 

determination of the 15N longitudinal (R1) and transverse (R2) relaxation rates were identical for all the three 

spectrometers, being analogous to these originally reported (59). For R2 measurements, a Carr-Parcell-Meiboom-Gill 

(CPMG) 180o pulse train with the refocusing delay of 650 µs was used during evolution (60). Delays between proton π 

pulses, used for the suppression of cross-correlation effects between 1H and 15N nuclei (61), were 5 and 10 ms in R1 and 

R2 measurements, respectively. The recycle delay was kept as long as 2.5 s. 1024 and 128 complex data points in time 

domains were collected in the hypercomplex mode. 15N decoupling during the acquisition was performed as 3. 2 kHz 

GARP pulse scheme (62). The relaxation rates were estimated, using ten delays for R1 (0.01, 0.09, 0.17, 0.29, 0.41, 

0.55, 0.69, 0.85, 1.01 and 1.25 s), and eight delays for R2 (0.01, 0.03, 0.05, 0.09, 0.13, 0.17, 0.21 and 0.25 s). {1H}-15N 

heteronuclear NOEs were measured according to the dynamic progressive saturation (63, 64), using the standard pulse 

sequence included in the BioPack (Varian Inc., PaloAlto, USA) software. To overcome problems with peaks 

overlapping, the NOE intensities were assumed as cross-peak’s heights. The R1 and R2 rates were then estimated by 

fitting an exponential decay curve in the form I(t) = I0 exp(-Ri·t) implemented in SPARKY, where I is the signal 

intensity and t is the evolution time for appropriate magnetization. Severe signal overlapping limited the quantitative 

interpretation of relaxation parameters to only 84 out of 101 assigned backbone amide 15N nuclei.  

Analysis of the 
15

N relaxation data. The 15N relaxation data (R1, R2, 
1H-15N NOE) were interpreted according to the 

reduced spectral density mapping, via sampling spectral density function, J(ω), at low (0), intermediate (ωN) and high 

(ωH ) frequencies (65).  

 

 

 
        

               

    

  2

032

0

1

2

22

2

2

1

,02.1,160,
1

8π3
:

6J
4R

1

3J04J
6

6J6J3J04J
8

6J3J
4

BaRArppmσ
r

γγ
hμ

=d,
σω

=cwhere

ωωJω+ω
γ

γd
+=NOE

R+ω+
c

+ω+ω+ω+ω+ωωJ+
d

=R

ωJc+ω+ω+ω+ωωJ
d

=R

exNH

NH

HN
N

NHNH

N

H

exNNHHNNH

N

2

NHNNH
























































   (1) 
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

5 

where J(ω) is the spectral density of molecular motion at a given angular frequency, and the additional term Rex, which 

scales with the square of magnetic field, stands for the contribution of micro- to millisecond motions to R2 (66, 67). The 

above system of equation can be resolved against J(ω) (65) giving:  
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The residues with possible contribution of conformational and/or chemical exchange to the transverse 15N relaxation 

were identified from the field-dependence of R2-½R1 (Equation 3), as these for which estimated Rex were identified, 

according to Peirce’s criterion (68) as outliers in the overall distribution of Rex. 
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Since the studied protein was known to be highly unfolded (35, 38), the standard Lipari-Szabo model-free approach 

(69, 70), which attributes a global correlation time (τm) to the overall rotational diffusion, was found inappropriate (71, 

72). Hence, an alternative approach of the direct fitting of the spectral density function (Equation 4) to the J(ω) data 

sampled at 0, ωN and 0.87·ωH was used.  
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where S2 is the square of the residue-specific generalized order parameter for slow motions, 1/τ’ = 1/τlocal + 1/ τe, and 

τlocal and τe are the effective, residue-specific correlation times for slow (>1ns) and fast (<100ps) motions, respectively.  

Structural calculations. NOE-derived distance restraints were extracted from the 15N-edited 3DNOESY- HSQC (73) 

(mixing time: 150 ms) and 13C-edited 3D-NOESY-HSQC (74) (mixing times: 90 ms and 250 ms) experiments. The 

cross-peaks in 3D-NOESY spectra were manually picked and assigned with the SPARKY program (44), and their 

heights were then converted into distance restrains with the aid of the CALIBA procedure included in CYANA 2.1 

(75). Additional constrains for backbone torsion angles were adopted from TALOS+ (58). Initial structural calculations 

were made with the simulated annealing (SA) protocol implemented in XPLOR 3 (76, 77). The structure obtained with 

homology modeling procedure was used as a template. The SA protocol started with 6ns dynamics at 1000K, with 

dihedral angle restraints and NOE restraints scaled to 5 kcal·mol-1·rad-2 and 50 kcal·mol-1·A-2, respectively, and the van 

der Waals’ radii scaled down by a factor of 0. 75. After that, the system was slowly cooled to 100K during 3ns, with 

the gradually increased terms for the repulsive van der Waals’ term (from 0. 003 to 50 kcal·mol-1·A4) and for dihedral 

angles (200 kcal·mol-1·rad-2). Each SA cycle finished with 1ns low-temperature evolution, followed by 1000 steps of 

Powell energy minimization. This protocol was repeated 500 times, and a cluster of 11 lowest pseudo-energy structures 

was selected for further analyses. The final refinement was performed, using additional constraints for experimental 

13Cα, 13Cβ and 1Hα chemical shifts, using chemical shift protocol (78, 79). Finally, the structures were then inspected 

with PROCHECK-NMR (80), and all of them were subjected to further 5 ns molecular dynamic simulations in a water 

box, using Yasara2 force field implemented in Yasara Structure package (81). To prevent the momentary unfolding of 

the protein, and to mimic the helix-promoting propensities of a 30% TFE solution, the medium-range (i, i+3) 
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constraints and angular restraints, imported directly from the SA protocol, were applied during the first 2 ns of 

simulations.  

Statistical tests. The relaxation parameters were analyzed in terms of their distributions, and the consistency of this 

data with normal distribution was initially tested with the aid of the Anderson-Darling goodness-of-fit test (82). Since 

some of the distributions significantly differ from the Gaussian one, the relaxation parameters obtained at different 

conditions (i.e. TFE concentration) or for different subsets of residues (e.g. His6-tag vs. HLHTH motif) were compared 

using the appropriate nonparametric Mann-Whitney U-test (83). All tests were done with the aid of Statistica package 

(84). 

Computational methods. All the data analyses and presentations were performed using GnuPlot 4.6 (85).  

 

RESULTS  

The HLHTH fold of rECσ
70

4 in a solution. The protein has been previously found soluble solely in a low-pH solution 

(35). Our previous studies demonstrated that the solubility of the protein substantially decreases above pH 4.5, which is 

far away from the theoretical pI of 9.1±0.3, estimated as the average of nine different methods (86). This phenomenon 

should be directly addressed to the dissociation of Asp and Glu side-chain carboxyl groups at pH above 5. Dissociation 

of Asp and Glu side-chains enables formation of numerous intra- and intermolecular salt bridges that compete with 

hydrophobic interactions (35). This destroys a hydrophobic core of the transiently-folded protein, and the exposition of 

hydrophobic residues towards solvent results in intensive aggregation.  

In order to stabilize the protein in a neutral solution, a number of solvent systems preventing the formation of salt 

bridges have been tested. Thus, 200 mM Na2SO4 and 1.8 M MgSO4 were found to improve minutely protein solubility 

at neutral pH, additionally stabilizing helical forms. However, limited protein solubility and required salt concentration 

precluded the application of any NMR techniques. The high concentration of arginine (~1 M) also improved rECσ70
4 

solubility (87), but such a high concentration precluded even the CD monitoring of a putative Arg-induced secondary 

structure formation. Substantial progress was achieved with the use of zwitterionic Non-Detergent SulfoBetaine 

stabilizers (NDSB). NDSB195 does not affect rECσ70
4 at low-pH (Supplementary Figure S1A), albeit its 100 mM 

solution efficiently screens electrostatic interactions between dissociated side chains of Asp/Glu and these of Arg/Lys, 

and the protein solubility approached 50 μM at pH 7.7. Moreover,  in the presence of 100 mM NDSB195, an increase 

in pH of rECσ70
4 solution results in the detectable increase of the estimated contribution of helical forms, which is 

clearly evidenced in CD spectra recorded at pH ranging from 2.6 to 7.5 (Supplementary Figure S2A), while the further 

increase of pH unfolds the protein. An optimal range of solution pH at which a protein is properly folded is a common 

protein property (88, 89). All CD spectra, analyzed together under the assumption of two-state equilibrium, show that, 

even at neutral pH, the protein is only partially folded. The maximal contribution of a putative folded state 

(approximately 50%) was achieved at the physiological pH of 7.5 (see the insert in Supplementary Figure S2A). It 

should be stressed that 100mM NDSB195 does not preserve protein structure for rECσ70
4 concentration exceeding 2µM 

(see Supplementary Figure S2B for details), so this solvent system could not be used for heteronuclear NMR studies. 

Altogether, it clearly indicates that the previously proposed TFE-water binary solvent system is the most suitable for 

the NMR studies on rECσ70
4 structural preferences. The 30% TFE concentration was found optimal, and the further 

addition of TFE did not resulted in visible changes of protein structure (Supplementary Figure S3). It should be 

mentioned that the CD spectrum of rECσ70
4 recorded in the presence of NDSB195 at pH 7.5 (Supplementary Figure 

S1A) resembles that recorded in TFE-water binary solvent (Supplementary Figure S3). This impression is strongly 
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supported by the deconvolution of CD spectra against contribution of secondary structure elements, populations of 

which were estimated with the aid of CDNN program (see Supplementary Table S1).  

NMR resonance assignment and protein secondary structure preferences derived from CSI data in a 30% (v/v) 

TFE solution. The resonance assignments for rECσ70
4 at 30% TFE (cf. Methods) were deposited in a BMRB database 

under accession number 15975. The consistent pattern of the downfield shifts of 13Cα and 13CO resonances, 

accompanying the upfield shift of the 1Hα, was observed for numerous residues. The values of the score function, 

αp (i)  (see (38) for details) identify significantly populated helical patterns, located in the regions: 3.2 (L532-A542; 

H0), 4.1 (L551- F563; H1), and 4.2 (L573-L599; H2, H3). Another less populated fragment, S602-S609, is located in 

the C-terminal part of rECσ70
4 (Figure 1A). The three clearly distinguished maxima coincide with the location of helical 

regions in the structures of homologous σ subunits (27-30, 33), while the last one (S602- S609) could only be found in 

σA
4 of T. maritime (27) and in E. coli σ70

4 in complex with an Rsd regulator (28), and in the recently solved structure of 

E. coli RNAP holoenzyme (30). The same trends, including both location and population of helical structures, are also 

clearly visible, when they are obtained with the aid of δ2D server (Figure 1B). The average population of helical 

structures in region 4.2 reaches 0.6 for a 30% (v/v) TFE solution, while at 10% (v/v) TFE it approached only 0.4 (38), 

respectively 0.33 and 0.37 when estimated using δ2d. The average population of helical structures for the whole protein 

was estimated to be 0.25 (38) and 0.38 for 10 and 30% TFE solutions, and respectively 0.25 and 0.26, when calculated 

using δ2D approach. These values are close to 0.35 estimated from CD spectrum (see Supplementary table S1), and 

substantially higher than 0.11 determined for the protein at low pH (35); 0.05 determined using δ2D. This clearly 

indicates a considerable increase in the propensity of rECσ70
4 backbone towards the α-helical fold in proportion to the 

increasing TFE concentration in an aqueous solution.  

A comparison of the location of helical regions in the TFE-induced structure of rECσ70
4 with that found for its 

homologous domain of known structures (see grey vertical strips in Figure 1, also highlighted in further figures), 

indicates that the C-terminal fragment of the H1 helix is considerably frayed, while H2 and H3, organized into the HTH 

motif, are in a similar location. The inspection of the estimated distribution of helical conformations along the protein 

sequence shows that the H3 helix is the most stable one, and it definitively does not propagate behind L598. The short 

helix H2 became significantly stabilized only at the highest TFE concentration (30%), and the location of the loop 

region that separates H1 and H2 at a 30% THE solution is similar to those seen in the crystal structures of the 

homologous proteins (27-30, 33). It is worth noting that, according to the δ2D analysis (Figure 1B), the residues 

located in the turn region of HTH motif (D581-T583), which are in helical conformation at 10% TFE, became non-

helical at higher TFE concentration. This perfectly agrees with the break of monotonic drift in HSQC spectra upon 

addition of TFE, previously observed for these residues (38). Altogether proves that 30% TFE does induce formation of 

transient HLHTH structure, which is absent, when TFE concentration is lower than 15% (38). The global analysis of 

chemical shift patterns performed with TALOS+ (58) also confirmed the presence of four helical regions in rECσ70
4 

(Figure 1C,). The values of φ and ψ backbone torsion angles were predicted as 'good' for 66 out of 103 analyzed 

residues. Among them, 32 are located in the putatively helical regions corresponding to HLHTH motif. The 

conformation for the 20 residues located in the N-terminal region of the protein was consistently attributed as dynamic. 

The next 17 residues, nine of which are located within HLHTH motif, were excluded from the further analysis since 

their backbone conformation was predicted as uncertain. Interestingly, the three N-terminal residues of the helix H1 

(L551, T552, A553) were also predicted in non-helical conformation, what, according to the reported ‘good’ quality of 

the prediction, indicates that a TFE-induced helix H1 may be for rECσ70
4 shorter than these found in the known 
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structures of homologous proteins. Similarly, residues Y571, T572 and G577 located at both of the termini of H2 are 

also predicted in non-helical conformation, what, together with CSI data (Figure 1A, B), proves that in ECσ70
4 H2 is 

significantly shorter than these from homologous proteins. (27-30, 33) 

The internal motions of rECσ
70

4 in a 30% TFE solution derived from 
15

N relaxation data. The R1 and R2 

relaxation rates, and {1H}-15N NOEs, were determined for rECσ70
4 in a 30% TFE solution of at 11.4, 14.1, and 18.7 T 

(see Supplementary Figure S4). As expected for substantially unfolded proteins, most of the {1H}-15N heteronuclear 

NOEs do not exceed 0.5, while the values expected for the limited internal mobility of N-H vectors in the folded 

proteins of a comparable size are of the order of 0.7 (90). However, the residues located in the putative HLHTH region 

display visibly increased NOE values (Supplementary Figure S4C). Moreover, the variations in transverse relaxation 

rates along the protein sequence are consistent with {1H}-15N NOEs profile, clearly identifying two regions that differ 

significantly in their conformational flexibility. Elevated R2 values determined for residues R534-L598 (varying in the 

range of 15-45 s-1) strictly coincide with the location of regions displaying propensities towards a TFE-induced helical 

structure (Figure 1). It is worth noting that residues: S539, L540, T552, M561, R562, Y571, T572, L573, R586, I587 

and R588, most of which is located in the putative HLHTH motif, display the substantially decreased rates of backbone 

15N transverse relaxation, what indicates their increased flexibility. The ratio R2/R1 is commonly used for identification 

of residues that experience motion of a timescale that differs from average molecular tumbling. Thus decreased values 

of R2/R1, which reflect the variation in R2, together with negative values of heteronuclear {1H}-15N NOEs, thus again 

identify residues experiencing increased flexibility (see Figure 2A). And high R2/R1 values point to residues with 

possible contributions of chemical exchange to the transverse relaxation. They may be also identified as these, which 

display substantial field-dependence of R2-½·R1. Both methods pointed to D581, R584, Q589 and K593 (Figures 2A, 

B), which were also identified as outliers in distribution of Rex (Figure 2C). Two of them are located in the turn region 

of HLHTF motif, while the two other (Q589, K593) are located just in the middle of H3.  

Internal rECσ
70

4 dynamics deduced from the reduced spectral density mapping. This analysis of 15N relaxation 

data does not required any assumption about the nature of molecular motion (65). The distributions of J(ω) along the 

protein sequence are presented in Supplementary Figure S5A-C. The J(0), which is most sensitive for slow motions on 

the nanosecond time-scale (Supplementary Figure S5C), follows the trend observed for R2 (Supplementary Figure 

S4C). The residues T537, E538, T544 T545, K557, D581-R584, E591, K593 and A594, for which J(0) substantially 

varies with the magnetic field,  may undergo slow conformational exchange processes on the μs-ms time-scale, 

contribution of which to the rate of transverse relaxation (R2) scales with the square of magnetic field. The extremely 

low J(0) values observed for residues located in N-terminal part of the protein of His6-tag and linker fragment 

preceding Leu 528 (average of 0.24 ns/rad), together with visibly high correlation times for fast motions, J(ωH) 

(>20ps/rad), show that this N-terminal part of the protein is almost unfolded. The same trend is observed for the C-

terminal part of the protein (i.e. for residues succeeding HLHTH motif), albeit visibly higher J(0) (average of 0.9 

ns/rad) and slightly lower J(ωH) suggest that motion of residues located in the C-terminal part of the protein is 

somehow restricted. The central part of the rECσ70
4 display substantially higher values of J(0) and smaller J(ωH). This 

is indicative for the folded proteins, however the values of J(ωH) higher than 7.5 ps/rad are indicative for residues 

experiencing significant internal flexibility (91). Interestingly, a few residues from HLHTH motif are substantially 

much more flexible than the others. All of them, R562, Y571, T572 and F573 are located in the loop region of HLHTH 

motif. In should be thus concluded  that this loop region undergoes fast conformational sampling. Finally, as expected, 

J(ωN) strongly varies with the strength of magnetic field.  
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Internal rECσ
70

4 dynamics estimated according to model-free approach. The simplest relaxation model describing 

contribution of slow and fast internal motions together with order parameter for the slow motion was used. In the case 

of poorly folded proteins, a correlation time for slow motions cannot be attributed to the correlation time characterizing 

overall rotation of the protein, but must be regarded as residue-dependent parameter. This makes challenging the 

problem of fitting J(ω) to the relaxation data. In general, only the simplest model (equation 4) was found reproducibly 

fitted upon several trial runs, while convergence all others strongly depended on starting values.  

The distribution of the square of the generalized order parameter (S2) along the protein sequence (Figure 3A) 

demonstrates that the mobility of all residues located within the HLHTH motif is definitively much more restricted. It 

should be emphasized that the trend in S2 variation, estimated from chemical shift data (a thick broken line in Figure 

3A), follows that obtained directly from the 15N relaxation data. However, the local extrema do not strictly coincide 

with the expected location of helical regions indicated by CSI analysis (see Figure 1A) and the predicted backbone 

angles (see Figure 1B), identified in the structures of homologous proteins. S2 values for residues located in HLHTH 

region (Table 1) are visibly smaller than those usually found for properly folded proteins (S2 > 0.9), however exceed 

the value of 0.6 observed for TFE-induced helix of calmodulin in 35% TFE aqueous solution (90).  

The distribution of local correlation times for slow motions (τlocal; cf. Figure 3B) remains in a complete 

agreement with the conclusion derived from the data presented in Figures 1 and 2. Again, the four regions of rECσ70
4 

(L532-D546, R554-M561, E574-D581 and R584-R599), characterized by the elevated values of τlocal, are clearly 

visible. A considerable simultaneous decrease in S2 and τlocal values observed for some residues located between D566 

and L573 additionally supports the increased flexibility of this loop region. The median of 11.6 ns/rad (see Table 1) is 

visibly higher than that expected for the proteins of a similar size, what may result from increased viscosity of TFE-

water mixed solvents (92). The possible contribution of slow conformational motions identified for residues T537, 

E538, T544 T545, K557, D581-R584, E591, K593 and A594 may also resulted in overestimation of the τlocal values.   

The distribution of local correlation times for fast motions, τe (Figure 3C) is strongly diverged, and the values estimated 

for HLHTH region are close to 30 ps.  

The low-resolution structure of rECσ
70

4 in a 30% TFE aqueous solution from the NOESY data. 1237 NOE 

contacts were assigned in 13C-, and 15N-edited 3D-NOESY spectra recorded at a 30% (v/v) TFE. This includes 778 

intraresidual, 330 sequential, 106 medium-range (1 ≤ |i – j| ≤ 4) and 23 long-range (|i – j| > 4) ones. The number of 

medium-range contacts (see Table 2) significantly exceeds that previously identified at 10% (v/v) TFE (106 vs. 15, 

respectively). However, most importantly, 23 long-range structural contacts between the regions that display a high 

population of secondary structure elements have been unequivocally assigned (see Supplementary Table S2 and 

Supplementary Figure S6). These contacts occur mainly between helical regions (e. g. H2-H3), but some involving 

loop regions (e. g. H1-L) can also be observed (see Table 2). Altogether, it clearly evidences the formation of, at least 

transient, a three-dimensional HLHTH structure. Such a small number of long-range contacts precluded any reasonable 

ensemble-based interpretation of NMR data (93), and only representative low-resolution structures that generally agree 

with CSI and NOE data.  

As shown in Table 2 and Supplementary Table S2, the assignment of NOESY medium- and long-range cross-

peaks, together with the relaxation data (Figures 2-3, S4, S5) and CSI analysis (Figure 1), unequivocally indicate that 

rECσ70
4 contains four helical regions, separated by two loops and one short turn, similarly as it has been found in the 

solution structure of homologous domains. The location of these helical regions was further constrained in the 
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structural modeling to access the agreement between the TFE-induced transient fold of rECσ70
4 with NOESY-derived 

distance constraints (see Supplementary Table S3 for short statistics).  

The ensemble of the resulting structures is presented in Figure 4A. The arrangement of the H1 and H3 remains 

the most stable (see Figure 4B), providing a kind of framework around which the more flexible LHT motif (i.e. loop 

and the short H2 region, followed by the turn) is organized in the form resembling these of  TM σA
4 (Figure 4C) and  

recently solved for ECσ70 the whole RNAP holoenzyme (Figure 4D) (30). The average RMSD calculated for backbone 

heavy atoms for the H1 and H3 helical regions within the cluster of the 11 lowest-(pseudo)energy structures was 

reduced to 2.1Å. The increased mobility of the LHT region may also be related to its physiological function (see 

Discussion for details).  

The MD study of the structural stability of a TFE-induced HLHTH fold of rECσ
70

4. The conformational screening 

was performed by eleven 5 ns MD runs, and each of them started from one of the 11 lowest-(pseudo)energy structures. 

Most of these trajectories preserved the initial protein fold, but during one of them a visible reorganization of the 

HLHTH motif, involving the simultaneous breaking of the H1 helix at R554-E555 and of the H3 helix at E591-A592 

was observed. Both locations agree with the increased contribution of the chemical exchange process to 15N relaxation 

rates found for residues and E591-R593 (Figure 2).  

 

DISCUSSION  

According to our earlier studies (35, 38) and all the data presented in this work, rECσ70
4 in an aqueous solution 

must be regarded an intrinsically disordered, but capable of transient folding in the HLHTH motif in the presence of the 

30% of TFE. In order to check to what extent the TFE-induced solution structure of rECσ70
4 resembles that of the 

homologous proteins, the most stable regions formed by the H1 and H3 helices of these two structures were compared 

(Figure 4C, D). The backbone architecture of these two helices identified by us in NMR-derived structure of rECσ70
4 is 

close to those of TM σA
4 in solution and EC σ70

4 in crystal structure of RNAP complex (31), but the RMSD difference 

for the backbone atoms between the modeled solution structure and each of these two structures exceeds 10 Å. 

However, this difference is smaller than 2 Å, when calculated only for H1 and H3, confirming the high structural 

homology of these regions (see Figure 4 C, D). It has to be stressed that the sequences of all known reference σ70
4 

structures differ noticeably in their loop regions of the canonical HLHTH DNA-recognizing motif (I565-Y571 in E. 

coli). This loop is involved in the proper orientation of the recognition helix, interacting with the DNA major grove, 

and is also directly involved in an interaction with promoters (34, 94).  

The internal dynamics of the TFE-induced fold of rECσ
70

4. The Anderson-Darling goodness-of-fit test 

demonstrated that distribution of S2, τlocal and τe estimated for rECσ70
4 are generally not Gaussian. The resulting 

medians accompanied by quartiles are presented in Table 1. For comparison corresponding mean values and standard 

deviations are also presented. All the distribution were compared with the aid of nonparametric Mann-Whitney U-test.  

The global effect of TFE concentration on 15N relaxation is clearly visible (Figure 5). S2 increases with the 

content of this agent (Table 1), reaching the maximum at 30% TFE (v/v). Four helical regions indicated by the CSI 

analysis (see Figure 1 for backbone angles estimated with TALOS+) agree with the distribution of relaxation 

parameters along a protein sequence (Figure 3). It could be thus concluded that the extent of a transient fold of the 

protein increases upon TFE titration. According to the nonparametric Mann-Whitney U-test (MW-test) the distribution 

of S2 differ significantly (p<10-6) for the all three protein regions, and the differences are statistically significant for all 

conditions tested (low-pH, 10% TFE, 30% TFE, see Table 1 details and Table 3 for exact p-values for comparisons)  
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The medians for effective local correlation time for fast motions, τe, calculated for the HLHTH region at 0, 10 

and 30% (v/v) TFE concentrations equal to 48ps, 31ps, and 28ps, respectively, thus confirming a TFE-induced 

restriction of fast motions within the HLHTH motif of rECσ70
4. The distribution of slow motions (τlocal; Figure 3B) 

remains in a full agreement with the results obtained for S2 and τe. Again, the four regions of rECσ70
4 (L532-D546, 

A549-R560, V576- R582 and E585-R599) can be distinguished by the elevated τlocal. The medians for τlocal are: 4.8 ns, 

9.5 ns, and 11.6 ns for 0%, 10% and 30% (v/v) TFE concentrations, respectively.  

Majority of these distributions differ significantly (see Table 3), proving that TFE addition does induce, at 

least transient, protein structure, as indicated by elevated S2 and restricted fast motions. A considerable simultaneous 

decrease in S2 and τlocal values, observed for residues D566-L573, identify a flexible structure located at the same 

protein sequence where the putative loop region of HLHTH motif . 

The above data clearly evidence that the addition of TFE to a protein solution stabilizes the HLHTH motif 

much more than that of the other region of the protein, as proved by the direct comparison of HLHTF motif with 

flanking residues (others in Table 3). Generally, the distributions of S2 and both correlation times estimated for residues 

located in the HLHTH motif significantly differ from those calculated separately for the peripheral residues located 

outside of this motif. However, it should be noted that all the TFE-related conformational changes generally lead to an 

increase in the population of the ordered structure, even for the residues outside of the HLHTH motif. This confirms 

that TFE acts as a non-specific structure-inducer, stabilizing the local secondary structures of folded proteins (95-97), 

including α-helices (98), β-turns (99) and β-hairpins (100). The thermodynamic effect of TFE should be connected with 

weakened non-local hydrophobic interactions, accompanied by slightly enhanced local ones, thus propagating context-

dependent formation of a native-like secondary structure in polypeptides (101). This reflected in an increase of the 

order parameter, S2, accompanied by a moderate decrease of the local correlation time for fast motions, τe. The 

structure-inducing effect observed for rECσ70
4 is definitively not uniform, but follows sequence-dependent propensities 

of the backbone already visible in a TFE-free low-pH protein solution (35).  

All the results referred to above clearly demonstrate that IDPs, even in the absence of physiological partners, 

may obtain their functional folds. And these states can be sampled with a variety of commonly used stabilizing agents 

like MgSO4, arginine, proline, sucrose, sarcosine, glycerol, NDSBs, TMAO or even by TFE, which also may act as a 

stabilizer (95).  
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Table 1. Relaxation parameters determined for rEC70
4 in an acidic solution, and for a 10% and a 30% TFE solution at 

pH 4.55, calculated separately for the residues located in N-terminal His6-tag and succeeding linker, in HLHTH region 

and both regions flanking HLHTH motif (others). All the medians are accompanied by lower and upper quartiles, and 

corresponding mean values are accompanied by the standard deviations. Since some of the distributions deviated, 

according to the Anderson-Darling test, from the normal ones, they were compared using appropriate nonparametric 

tests (see Table 3 and methods for details). 

 

conditions n 
S2 τlocal [ns] τe [ps] 

Median  Mean Median  Mean  Median  Mean  

His6-tag + linker (residues preceding Leu 528) 

low-pH 19 0.07 (0.05;0.09) 0.07 (±0.03) 3.2 (2.3;4.3) 4.1 ( ±2.8) 67 (61;83) 72 ( ±  15) 

10% TFE 21 0.11 (0.10;0.12) 0.11 ( ±0.04) 4.0 (3.3;4.6) 4.1 ( ±1.0) 66 (58;72) 66 ( ±  12) 

30% TFE 21 0.36 (0.30;0.45) 0.37 ( ±0.10) 1.0 (0.8;2.6) 1.7 ( ±1.1) 34 (16;75) 97 ( ±143) 

HLHTH (Ala 549-Arg 599) 

low-pH 46 0.17 (0.16;0.19) 0.18 ( ±0.03)   4.8 (4.3;  5.2)   4.9 ( ±0.8) 48 (45;52) 49 ( ±  5) 

10% TFE 49 0.32 (0.29;0.34) 0.32 ( ±0.03)   9.5 (8.6;  9.9)   9.3 ( ±1.0) 31 (26;36) 31 ( ±  6) 

30% TFE 47 0.65 (0.58;0.69) 0.61 ( ±0.12) 11.6 (9.9;12.9) 10.6 ( ±3.4) 28 (16;34) 26 ( ±16) 

others (L528-L548 and H600-D613)  

low-pH 27 0.12 (0.11;0.12) 0.11 ( ±0.01) 3.4 (3.0;3.8) 3.5 ( ±0.5) 57 (55;62) 59 ( ±  7) 

10% TFE 30 0.23 (0.20;0.28) 0.23 ( ±0.05) 6.8 (6.0;8.5) 7.0 ( ±1.5) 46 (39;53) 45 ( ±12) 

30% TFE 28 0.45 (0.43;0.59) 0.49 ( ±0.10) 5.5 (5.1;9.1) 6.8 ( ±2.3) 33 (28;36) 32 ( ±  8) 

 

Table 2. Long-range cross-peaks unequivocally assigned in 15N- and 13C-edited NOESY spectra recorded for rECσ70
4 at 

pH 4.55 in 30% (v/v) TFE solution. 

 
15

N-edited 3D-NOESY 

mixing time: 150 ms
 

13
C-edited 3D-NOESY 

mixing time: 90ms
 

13
C edited 3D-NOESY 

mixing time: 250ms 

H1-L   I565Hβ-R560Hβ2,3   

H1-H2     V576Hβ-M561Hα,γ3 

H1-H3 E591HN-L559Hα  I587Hγ2-V558Hγ1  I590Hα,β-E555Hα, 

H2-H3 
R584HN-G577HN; T583HN-

E575Hα,β1,β2,γ1,γ2; T583HN-K578Hα,β1,γ,ε 
 I565Hβ-V576Hβ  I587Hα-V576Hγ1,γ2 

 

 

Table 3. The comparison of the estimated distributions of relaxation parameters determined for rECσ70
4 in various 

conditions made with the aid of Mann-Whitney test. The IDs corresponds to the data presented in Table 1.  

 compared distributions 

IDs HLHTH vs. others TFE 30% vs. TFE 10% 

conditions low-pH 10% TFE 30% TFE His6-tag HLHTH others 

n1,n2 46, 27 49, 30 47, 28 21, 21 47, 49 28, 30 

parameter p-values for comparison 

S2  < 10-6
  < 10-6

  < 10-6
  1.6·10-4

  < 10-6
 < 10-6

 

τlocal[ns]  < 10-6
  < 10-6

 < 10-6
 0.13 < 10-6

 0.44 

τe[ps] < 10-6
 < 10-6

 1.7·10-3
 0.32 1.6·10-3

 < 10-6
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Figure Legends  

 

Figure 1. The distribution of a TFE-induced secondary structure along the rECσ70
4 sequence. The population of α-

helical conformation was estimated from CSI data (A) for an acidic aqueous solution (pH 2.8, white bars), 10% 

(v/v) TFE (pH 4.5, grey bars) and 30% (v/v) TFE (pH 4.6, in black). In parallel (B), the backbone angles phi (φ), 

and psi (ψ) were predicted with the aid of TALOS+ for rECσ70
4 in a 30% TFE solution at pH 4.6. Grey vertical 

strips mark helical regions found in the structure of σ70
4 homologues from thermophilic bacteria, and the lighter 

strips mark additional helical regions found in E. coli σ70
4 in the RNAP complex. The size of the error bars 

represents the standard deviation from the average of the dihedral angles. Grey and white markers point residues, 

for which conformation estimated by TALOS+ was reported as either dynamic or uncertain, respectively. Two of the 

latter, namely A594 and V606 were most likely wrongly predicted in non-helical conformation.  

 

Figure 2. The distributions of R2/R1 ratio along protein sequence determined for rECσ70
4 in a 30% TFE solution (A), 

and chemical exchange contribution, Rex, estimated at 11.4 T according to equation 3 (B). White, grey and black 

markers in panel A identify the values determined at 11.4, 14.1 and 18.7T, respectively. Vertical bars represent 

estimates of the experimental error. Grey strips mark locations of the helical segments of the HLHTH motif.  Grey 

circles mark outliers in cumulative distribution of Rex (C). 

 

Figure 3. The interpretation of rECσ70
4 NMR relaxation according to Model–Free approach optimized for IDP proteins 

(see equations 2A-C). Grey vertical strips mark helical regions present in HLHTH motif. Structured regions 

stabilized by TFE exhibit the increased values of the order parameter S2, indicative of the build-up of at least 

transient 3D-structure. The distributions of both the generalized order parameter, S2, and the corresponding slow-

motion correlation times, τlocal, indicate that the N-terminal 21-residue fragment is almost unfolded, and the mobility 

of the residues located in the central HLHTH motif are generally much more restricted than those located outside of 

this motif. The thick broken line follows the S2 values estimated on the basis of the experimental chemical shifts of 
13C, 15N, 13Cα, 13Cβ and 1Hα resonances according to the RCI algorithm included in TALOS+. For comparison the 

data determined previously for low-pH solution (gray dotted line) and 10%TFE (black line following diamonds) are 

also presented. 

Figure 4. The transient solution structure of rECσ70
4 at a 30% (v/v) TFE concentration. The ribbon representation of the 

ensemble of 11 lowest-energy structures superposed for the H1 and H3 helical regions (A), HLHTH motifs of the 
latter (B) and superposition of the representative transient low-energy structure with the solution structure of T. 

maritima σA (C) and  just published crystal structure of E. coli σ70
4 (D) are presented.  

Figure 5. The cumulative distribution of generalized order parameter S2 (A) and correlation times for slow (B) and fast 

(C) correlation times determined for ECσ70
4 at low-pH solution (open), and 10% (grey) and 30% (black) TFE 

concentration.   
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