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Abstract

We present a general probabilistic framework for predicting the substrate specificity of enzymes. We designed this
approach to be easily applicable to different organisms and enzymes. Therefore, our predictive models do not rely on
species-specific properties and use mostly sequence-derived data. Maximum Likelihood optimization is used to fine-tune
model parameters and the Akaike Information Criterion is employed to overcome the issue of correlated variables. As a
proof-of-principle, we apply our approach to predicting general substrate specificity of yeast methyltransferases (MTases).
As input, we use several physico-chemical and biological properties of MTases: structural fold, isoelectric point, expression
pattern and cellular localization. Our method accurately predicts whether a yeast MTase methylates a protein, RNA or
another molecule. Among our experimentally tested predictions, 89% were confirmed, including the surprising prediction
that YOR021C is the first known MTase with a SPOUT fold that methylates a substrate other than RNA (protein). Our
approach not only allows for highly accurate prediction of functional specificity of MTases, but also provides insight into
general rules governing MTase substrate specificity.
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Introduction

Prediction of protein function from its sequence is an important

goal of bioinformatics [1,2], since the function of many proteins

remains unknown, including more than 50% of human proteins.

Because of its importance, a large-scale community-based Critical

Assessment of Protein Function Annotation (CAFA) experiment is

held biannually [3], to objectively evaluate and compare different

methods and stimulate research in this area. One of the most

difficult cases of protein function prediction is that of enzyme

substrate specificity, which is essential for understanding its role in

cellular processes. Even if the exact 3D structure of an enzyme is

known, its substrate specificity is often not clear, as it depends on

both local (e.g. active site) and global (e.g. protein structure)

properties [2,4,5].

Many approaches have been proposed to predict enzyme

substrate specificity. One example, applied to type II restriction

endonucleases (REases), relied on the observation that connectivity

of the secondary structures in the aba structural core correlates

with the angles between the secondary structure elements and the

cleavage patterns of the REases [6]. Prediction of optimal

substrate peptides (encompassing the phosphorylation site) for

protein kinases was done taking only the amino acid sequence of a

kinase as input [7]. Analysis of available crystal structures,

molecular modeling, and sequence analyses of kinases and

substrates led to extraction of a set of rules governing the substrate

specificity of protein serine/threonine kinases. The method was

used to analyze yeast cell cycle control and DNA damage

checkpoint pathways. Combined genomic and functional context

was recently used in Zhang et al. [8] to assign function of

homologous proteins from the carbohydrate FGGY kinase family.

However, homology alone is not sufficient to successfully predict

protein substrate specificity [4,9].

Several bioinformatics approaches have been applied to predict

substrate specificity of yeast MTases. An attempt to infer the

substrate of methylation from a hidden Markov model profile

clustering analysis, applied to Saccharomyces cerevisiae Rossmann-like

fold methyltransferases, revealed some grouping of MTases that

correlated with their substrate specificity [10]. However, this

method is limited and not capable of predicting substrate

specificity for all studied proteins. In Wlodarski et al. [11] we
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proposed that fold, pI, temporal expression pattern and protein

localization contribute to determining MTase substrate specificity.

The prediction methods discussed above typically rely on

complex heuristics and in some cases require a detailed 3D

structure of the protein, or are applicable only to some of the

studied enzymes. Here, we propose a very general framework

based on fundamental laws of probability that is applicable to all

considered proteins (even in cases of missing data) and does not

require any specific data type (e.g. known 3D structure, conserved

sequence motifs). Moreover, our method is capable of correctly

predicting substrate specificity from a combination of properties

not yet observed among known enzymes. Our method has a much

higher percentage of successful predictions (84–89%) than

previous approaches and is not limited to a certain group of

MTases [10,11]. Since our approach is general and relies on

features that are sequence-derived and not organism-specific, it

should be easily applicable to other organisms and enzyme classes.

As proof-of-principle, our approach is employed to predict

general substrate specificity of yeast MTases. MTases are present

in all living organisms and involved in many important cellular

processes such as signal transduction, transcriptional control,

biosynthesis and metabolism [12]. MTases comprise a large and

highly diverse group of enzymes that transfer a methyl group from

a donor (typically S-Adenosyl-L-Methionine, SAM) to an acceptor

(MTase substrate) [13]. In S. cerevisiae, there are 86 MTases and

their substrates are either proteins, RNAs or other molecules,

(DNA is not enzymatically methylated [14]) [11]. As a training set,

we used 61 S. cerevisiae MTases with experimentally confirmed

substrate specificity (known MTases) (Table S2) and predicted

substrate specificities for 25 putative S. cerevisiae MTases with

unknown substrate specificity (putative MTases). After our

predictions were made, the substrate specificities of 9 MTases

were confirmed experimentally, with results consistent with

predictions in 89% (8 out of 9) of the cases.

Results and Discussion

We propose a mathematical framework for inferring substrate

specificities from the physico-chemical and biological properties of

MTases. The advantage of our method is that it yields very

accurate substrate specificity predictions and explicitly provides

the probabilities that a given MTase methylates a substrate from

each class (RNA, protein or other molecule). The method consists

of three stages. First, we estimate conditional probability for each

substrate specificity based on a single property. Second, the final

probability is computed based on several selected properties. The

single-property probabilities are combined as described in

Materials And Methods. The high number of available enzyme

properties leads to a very large combinatorial space of probabilistic

models for predicting the substrate specificity. To limit the search

for the best model, we selected the 22 most informative properties

as defined by the likelihood of the respective single property

models on the training set (Table S1). For numerical variables, we

chose either continuous or binned representation, as well as

optimal number of bins.

The final model is selected based on optimization of up to 14

parameters (Table S2) and evaluation of 86,000 models. Since the

number of properties and range of parameters considered did not

allow for an exhaustive search in the model space, we optimized

continuous properties using the Powell method (Text S1.

Supplementary text) [15]. Because we were comparing models

with different numbers of parameters, the likelihood criterion

would not be appropriate. Likelihood, which describes the

goodness of fit, is always increased if more variables are added

to the best performing model with a given number of parameters.

Therefore, to compare models with differing numbers of

parameters, we instead used the Akaike Information Criterion

(AIC) [16], which balances the goodness of the fit (likelihood) with

informativity of the parameters. The AIC naturally selects models

using the most informative sets of parameters and rejects those

with highly correlated parameters. This is important in our case, as

we prefer to use parameters with clear biological or physico-

chemical interpretation, which in general are not mutually

independent.

Probabilities of substrate specificities conditional on a
single property

The probability of substrate specificity for an MTase with a

certain property is given by the Bayes Theorem:

P substrateijpropertyð Þ~ P propertyjsubstrateið ÞP substrateið Þ
P propertyð Þ ,ð1Þ

where P(substratei) is the probability of an MTase to methylate

substrate type i (i.e. protein, RNA or other molecule) and

P(property) is its probability to have a certain property (e.g.

structural fold, isoelectric point (pI), expression pattern and

cellular localization). P(substratei|property) is the probability that

an MTase will methylate substrate type i if this MTase has the

given property. P(property|substratei) is the probability of an

MTase having a certain property if it methylates substrate type i

and P(substratei) is the a priori probability of substrate type i. A

property can be either categorical (e.g. fold) or numerical (e.g. pI,

expression onset), and in either case, a range of different predictive

models can be constructed. To select the best single-property

model, we apply the Maximum Likelihood (ML) method to

optimize P(substratei|property) on the training set (i.e. substrate

specificities of the known MTases). The training set consists of 61

S. cerevisiae MTases with experimentally confirmed substrate

specificity (known MTases) (Table S2). Among them 26 methylate

RNAs, 24 methylate proteins and 11 methylate other molecules.

Properties used as predictors in the model
Preliminary selection of biophysical, cellular and functional

properties of MTases to use in our model was based on our

previous research [11], which indicated that protein isoelectric

point (pI), structural fold, expression pattern, expression onset and

cellular localization are all correlated with MTase substrate

specificity (Fig. 1). We performed preliminary studies to determine

which specific properties have the highest predictive power.

Specifically, we interrogated similar properties to find out which

Author Summary

Our approach is easily applicable to different organisms,
because it does not rely on species-specific properties and
uses mostly sequence-derived and other readily available
data (e.g. isoelectric point or predicted structural fold).
Tests on yeast MTases indicate that the accuracy of our
predictions is ,90%. We show that knowledge of
substrate binding sites or corresponding motifs is not
crucial for highly accurate general substrate specificity
predictions of enzymes, and provide new insights into how
such specificities are achieved at the molecular level. We
predict substrate specificities not yet observed for a given
class of enzymes, and experimentally verify our predic-
tions.

Predicting Substrate Specificity of MTases
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among them are most significantly enriched in MTases sharing the

same general substrate specificity. For example, we examined

different data on protein cellular localization including both

predicted localizations [17], which are available for all proteins,

and experimentally derived data on protein localizations. We

concluded that for yeast MTase substrate specificity predictions

the most useful data are Gene Ontology protein localizations

limited to IDA and IEA evidence codes and additionally grouped

into superclusters of localizations. Similarly, we grouped structural

folds into superclusters (Fig. 2A and B). The predictors selected for

use in the models are discussed in detail below.

Structural fold of MTase catalytic domain
As shown in our previous study [11], yeast MTases may adopt

up to nine different folds (predicted with high confidence from

sequence similarity) within their catalytic domains: Rossmann-like,

SPOUT, SET domain, TIM beta/alpha-barrel, transmembrane,

tetrapyrrole methylase, DNA/RNA-binding 3-helical bundle,

SSo0622-like and thymidylate synthetase. For predictions, we

divided them into four groups based on the frequency of a

particular fold being assumed by MTases and correlation with

their substrate specificity preference: Rossmann-like, SPOUT,

SET domain and ‘‘other’’. The ‘‘other folds’’ category was

motivated by few yeast MTases assuming them and their shared

preference for ‘‘other’’ substrate specificity (Fig. 2A). In contrast,

all eight known MTases with a SET fold methylate proteins, and

all four known MTases with a SPOUT fold methylate RNA

(Fig. 2A). The Rossmann-like fold MTase group has more diverse

substrate specificities and comprises 62% of known MTases.

About two-thirds of MTases in the ‘‘other folds’’ category

methylate other substrates.

Cellular localization
We observed that for known MTases, substrate specificity

correlates with cellular GO localizations [18], especially for the

nucleolus, nucleus and mitochondrion localizations (Fig. 2B).

Moreover, the original number of GO localization terms were

clearly too big in comparison with the number of known MTases.

Therefore, we decided to describe MTase cellular localization by

four mutually exclusive terms: (i) nucleolus, (ii) nucleus and not

nucleolus, (iii) mitochondrion and not nucleus, and (iv) other. All

known yeast MTases localized in the nucleolus have RNA as a

substrate. MTases with ‘nucleus and not in nucleolus’ localization

most often methylate proteins (50%) or RNA (41%); only two

methylate other substrates. Among known MTases within the

‘mitochondrion and not nucleus’ category there is only one

example of a protein MTase. The remaining twenty three known

protein MTases are not localized in the mitochondria. Moreover,

MTases that methylate other substrates constitute 50% of those in

the ‘mitochondrion and not nucleus’ group.

Isoelectric point (pI)
As we pointed out in [11], for known MTases, global pI values

correlate with their substrate specificity. Since the isoelectric point

is a proxy for protein charge, we can expect proteins with a high pI

to bind negatively charged molecules like RNA. Indeed, 67% of

known MTases with pI$6.5 methylate RNA. On the other hand,

65% of known MTases with a low pI,6.5 methylate proteins.

MTases that methylate other substrates have a medium-range pI

(Fig. 2D).

We also searched for regions with very high or low pI values,

expecting that such regions of a protein might correspond to

substrate binding regions or domains. For automatic identification

of such regions, we computed the maximum and minimum local

pI values for each sliding window size (from 15 to 185 a.a.) and for

each MTase, and referred to them as pI max and pI min,

respectively.

Expression patterns in Yeast Metabolic Cycle (YMC)
The YMC is a redox cycle lasting 300 minutes, in which genes

with similar functions tend to be expressed within a specific

temporal window [19]. Expression profiles of genes periodically

expressed in the YMC can be grouped into three main clusters:

Ox (oxidative), R/C (reductive/charging) and R/B (reductive/

building) [19]. Nineteen known MTases belong to the Ox cluster,

among them ten methylate RNAs and seven methylate proteins.

Two-thirds of known MTases from the R/C cluster methylate

other substrates, and most of those from the R/B cluster (5 out of

8) methylate proteins (Fig. 2C). To describe expression patterns, in

addition to YMC expression clusters, we also used the onset of

individual YMC gene expression [20]. More than half of known

MTases (30 of 52) have similar YMC expression onsets around the

beginning of the YMC cycle (between 280 min and 16 min).

However, all but one known MTase that methylate other

Figure 1. Workflow of the prediction model.
doi:10.1371/journal.pcbi.1003514.g001

Predicting Substrate Specificity of MTases
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substrates and have assigned the onset of expression [20], have

expression onsets after 16 min and before 280 min (Fig. 2E) (only

genes periodically regulated during YMC, as determined by [21]

have their onsets of expression assigned).

The best single-property models
The ML method was used to select a model most likely to

reproduce the observed data (i.e. general substrate specificities of

the known MTases) and then AIC penalty for number was

parameters was applied. The model best scoring after the AIC

correction is hereafter referred to as the ‘‘best’’ model. The

properties, along with their parameterization, log likelihood and

AIC values are listed in Table S1. Surprisingly, the best scoring

single property is the isoelectric point (pI). The best model with a

single pI threshold had a pI threshold of 6.97. The model using

this single property can correctly predict substrate specificity for

67% of the known MTases, giving even better results than the

single property model based on structural fold. The second best

scoring property is pI max (calculated using 125 a.a. sliding

window) with a threshold of 9.85. However, we do not expect the

125 a.a. to be a biophysically important fragment size, because

when two thresholds for pI max are allowed, the best fragment size

is much bigger (170 a.a.). The pI max model correctly predicts 42

out of 61 proteins (69%). The third best scoring property is the

protein fold, single-property model using fold correctly predicts

66% of known MTases. (The models are ranked not according to

the number of correct prediction, which is not a smooth measure

and is subject to Poissonian noise, but according to their AIC

value, which is log likelihood with the penalty for the number of

parameters).

The prior probability of having a given substrate specificity,

P(substratei), that we used in our models was the fraction of known

MTases with that specific substrate type. When we made

predictions using prior probabilities alone, they were correct in

only 43% of cases, while for the best single property model, they

were correct in 67% of cases. We also verified that allowing a

different P(substratei) than that observed among known MTases

does not improve the outcome: optimization over different prior

probabilities converges to values observed among known MTases.

We compared our approach with a simple homology method of

substrate specificity inference from a well annotated protein

sharing the highest sequence similarity. Such prediction from the

most similar known MTase of the same catalytic fold (the closest

paralog) in S. cerevisiae gave 61% correct predictions for known

MTases. This shows that in our case sequence similarity, contrary

to popular belief, is not the most informative property for

predicting MTase substrate specificity within a single organism,

as even close homologs can have different general substrate

Figure 2. Distribution of various property classes among groups of MTases with different substrate specificity. (A) structural fold of
the catalytic domain, (B) cellular localization, (C) expression cluster in YMC, (D) expression onset in the YMC, (E) isoelectric point (pI).
doi:10.1371/journal.pcbi.1003514.g002

Predicting Substrate Specificity of MTases
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specificities. For example, MTases PPM1 and PPM2 display

,30% sequence identity, but methylate different types of

substrates: PPM1 methylates a protein while PPM2 methylates

an RNA.

The best multi-property models
We studied predictive models using several properties at a time,

assuming their independence (Eq. 2 Methods). In practice, the

properties included are typically correlated. To address this issue,

we first used the ML method to optimize parameter values for

every family of the models considered (i.e. for any different

combination of properties) to maximize the accuracy of predic-

tions in known cases. Naturally, models with a higher number of

parameters will produce more accurate predictions. Therefore, we

used AIC for model selection to ensure that the model with the

most informative properties, as opposed to the model using the

most properties, would be chosen as our best model. Finally, such

a chosen model (best model) was used to predict substrate

specificities for 25 putative S. cerevisiae MTases with unknown

substrate specificity (putative MTases).

We evaluated 86000 multi-property models dependent on up to

14 properties (Table S3 and S4). The best-scoring model uses the

following properties: pI, SET fold, other folds and R/C expression

cluster (Table S3). The pI property employs a single threshold of

6.95. Other properties, SET fold, other folds and R/C expression

cluster, are binary properties; an MTase can either have this

property or not. The pI property distinguishes known MTases that

methylate RNA from those that methylate proteins, while the SET

fold property indicates known MTases with protein substrate

specificity. Analogously, the ‘‘other folds’’ property correlates with

‘‘other’’ substrate specificity. Detection of known MTases with

other substrate specificity is additionally supported by including an

R/C expression cluster category, which is employed by the top five

models (Table S3). The sixth best model does not use any property

derived from the expression data, but it does use localization

(mitochondrion) and pI (with single threshold of 6.96), SET fold

and ‘‘other folds’’ properties. The best model using neither

localization or expression data utilizes pI (with single threshold of

6.97), SET fold and ‘‘other folds’’ properties. This model scores

35th in terms of best AIC and correctly predicts substrate

specificities of 79% of known MTases (48 out of 61).

Verification of the best model using known MTases
The best model correctly predicts substrate specificity for 83.6%

of known MTases (in 51 out of 61 MTases the highest scoring

substrate class coincided with the actual substrate class) (Table S5).

We computed the statistical significance of obtaining 51 out of 61

correct MTase substrate specificity predictions with the null

hypothesis that predictions are random. We then applied very

conservative Bonferroni correction considering 86,000 alternative

models for multiple hypothesis testing and obtained a very

statistically significant p-value, p = 7.261029, even though our

search space for the best model was not restricted to the most

promising candidates. This result shows that our method is

capable of yielding final models with very high predictive power.

Moreover, the probabilities associated with the best scoring

substrate specificity are significantly higher when the prediction is

right than when it is not (p = 0.01, t-test, Fig. S1). Taken together,

the overall very high-accuracy of our predictions (.83%)

combined with the statistically significant correlation between

correctness of our prediction and the likelihood we assign to

predicted substrate specificities validates our approach and justifies

the selection of classes of input parameters for our models (Fig. 1).

We succeeded in predicting substrate specificity for 88.5% (23 of

26) of RNA MTases, 70.8% (17 of 24) of protein MTases and

100% of 11 MTases that methylate other substrates. Among the

MTases whose substrate specificity was not predicted correctly,

four (YDL200C, YDR410C, YDR440W, YNL063W) were

predicted to methylate RNA and three (YDR435C, YLR137W,

YLR172C) to have other substrate specificity while they actually

methylate proteins. For the last five of those MTases correct

substrate specificity predictions have the second-highest probabil-

ities. Namely, they are predicted to be protein MTases with the

following probabilities: YLR172C (37%), YLR137W (36%),

YDR435C (33%) and YDR440W and YNL063W (14%). Thus,

known MTases methylating proteins appear to be the most

difficult to predict, likely due to vast functional differences within

the ‘protein’ class of substrates. On the other hand, we predicted

three MTases (YDL112W, YOL141W, YOR239W) to have

protein substrate specificity when in fact they are RNA MTases.

Below we discuss in detail the reasons for incorrect predictions in

these difficult cases: (i) ABP140 (YOR239W) has extraordinary

low pI compared with other known MTases that methylate RNA;

(ii) PPM1 (YDR435C) and PPM2 (YOL141W) are close homologs

that methylate protein and RNA, respectively. However, they both

modify the same chemical group: oxygen from a carbonyl group.

Specifically, PPM1 methylates the C-terminal of protein phospha-

tase 2A [22], in turn PPM2 is involved in the methoxycarbonylation

required for synthesis of wybutosine, an atypical nucleoside of

tRNAPhe [23]. They have very similar pIs that are below our 6.95

threshold. Low pI is more typical for the known protein MTases,

therefore PPM2 is predicted to methylate protein. Additionally,

PPM1 is in the R/C expression cluster of the YMC, which

outweighs its prediction towards methylating another substrate; (iii)

MTQ1 (YNL063W), MGT1 (YDL200C), DOT1 (YDR440W),

STE14 (YDR410C) are MTases that methylate proteins and are

predicted to have RNA substrate specificity as they all have high pI

(above 6.95 threshold). MGT1 is not a typical protein MTase

because it transfers a methyl group from DNA to itself (DNA

demethylation). The nucleic acid is not methylated, as predicted,

but is actually a substrate in the reaction and the high positive

charge of the MTase supports its binding. DOT1 is a Rossmann-like

fold MTase specific for histones. We noticed a tendency for histone

MTases to have relatively high pI (although it was not incorporated

into our models due to there being only four histone MTases present

in yeast). Specifically, SET1 and SET2 both methylate histones and

also have a high pI, like DOT1 MTase. However, the model

predicts them correctly as protein MTases because they have a SET

fold. (iv) DPH5 (YLR172C) and YLR137W are protein MTases

incorrectly predicted to methylate other substrate types. DPH5 has

a tetrapyrrole methylase fold that is in the ‘‘other’’ folds category

and YLR137W is in the R/C expression cluster. These properties

overweigh prediction for those MTases to have other substrate

specificity; (v) TRM3 (YDL112W) is an RNA MTase that is

incorrectly predicted to methylate protein because of its low pI.

Substrate predictions for MTases with unknown
substrate specificity

According to our best model, 13 out of 25 putative MTases

methylate RNAs, ten methylate proteins and two methylate other

substrates (Fig. 3). Among 18 putative MTases with a Rossmann-

like fold, five are predicted to methylate proteins, two to methylate

other substrates and eleven to methylate RNA. As expected, all

four putative MTases with a SET fold (YHR207C, YPL165C,

YJL105W and YKR029C) are predicted to methylate proteins.

Our model predicts two out the three putative MTases with a

SPOUT fold (YGR283C, YMR310C) to methylate RNA.

Predicting Substrate Specificity of MTases
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Surprisingly, our model also predicts that a third putative MTase

with a SPOUT fold, YOR021C, is the first known example of a

SPOUT methylase in any organism to methylate a substrate other

than RNA [24].

Experimental verification of substrate specificities
predicted for putative MTases

To validate our approach for general substrate specificity

prediction we performed protein methylation assays for selected

putative yeast MTases. We used this approach successfully in the

past to identify two yeast protein MTases: YBR271W and

YLR285W (NNT1) [11]. Briefly, we incubated purified recombi-

nant proteins with total cell extracts from the wild-type yeast and

respective knockout strains in the presence of tritium-labeled

AdoMet ([3H] AdoMet). The reaction products were analyzed by

SDS-PAGE followed by autoradiography. HMT1 (a protein

MTase) and TRM4 (an RNA MTase) were used as positive and

negative controls, respectively. As expected, for control reactions

we observed protein methylation patterns matching known

substrates for HMT1, but not for RNA MTase TRM4 (the smear

at the bottom of the gels in TRM4 lane corresponds to tRNA

substrate).

First, we focused on our most unexpected prediction that

YOR021C is the first ever known SPOUT MTase to methylate

protein (Table S2). Indeed, in the in vitro assay, we observed the

presence of protein methylation products for YOR021C.

YOR021C seems to methylate at least 2 proteins (,20 and

30 kDa) detected only when the deletion strain was used (Fig. 4),

which strongly suggests that these modifications are specific and

stable. The same results were obtained when total RNA was

removed from cell extracts using RNaseA. Combined, these data

indicate that YOR021C is a protein MTase. Very recently

another group independently confirmed our findings by showing

that this MTase methylates a small ribosomal subunit protein

Rps3 [25], with molecular weight 26.5 kDa, consistent with one of

our observed methylation products. In contrast, for SPOUT

MTases YGR283C and YMR310C, which we predict to

methylate their usual substrate, RNA, no protein methylation

was found (Fig. S2).

We also tested protein methylation for selected Rossmann-like

fold MTases with unknown substrate specificity: YNL092W,

YDR316W (OMS1), YIL096C and YKL155C (RSM22). An in

vitro MTase activity assay suggests that YNL092W is a protein

MTase. For this MTase we detected on tritium screen a

methylated product corresponding to the molecular weight of

YNL092W. Moreover, methylated product was also detected

when purified recombinant protein was incubated only with [3H]

AdoMet (Fig. 4), indicating that YNL092W methylates itself (since

no other protein substrate was present). Interestingly, this seems to

be the second yeast protein, after MGT1, capable of automethyla-

tion. For the remaining Rossmann-like MTases: YDR316W

(OMS1), YIL096C and YKL155C (RSM22), predicted to

methylate RNA, we did not observe any protein methylation

(Fig. S2), supporting their predicted substrate specificity.

Our prediction that YHR209W (CRG1) methylates substrates

from the ‘‘other substrate’’ category, has been recently confirmed

by Lissina et al. [26], who showed it methylates canthardin.

Another of our predictions, that YHR207C (SET5) methylates

protein, has also been recently confirmed showing it to methylate

histone H4 [27].

Comparison with CAFA predictors
In the year 2012 CAFA experiment, F-measure (a harmonic

mean between precision and recall) was used to compare

performance of different models [3]. The best scoring CAFA

model (Jones-UCL group) achieved F-measure of 0.6 for

predictions of molecular function, while our classifier has an F-

measure of 0.84. The fact that our focused method performs so

much better than the best general predictor is very reassuring,

although not surprising. Constructing narrower predictors allows

for selecting features most relevant to the properties being

predicted, and if executed well, should result in much better

predictions than from predictors aiming to predict more general

molecular function categories.

Figure 3. General substrate prediction for MTases with unknown substrate specificity.
doi:10.1371/journal.pcbi.1003514.g003
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Potential further applications
The framework presented in this paper can be readily applied to

other biological systems and questions. Below is a discussion of the

most promising areas of application requiring only minor

adaptations of the approach.

A. Inferring substrate specificity of MTases at a more

detailed level. It would be of interest to predict also more

detailed function of MTases, such as methylating histone and

ribosomal proteins, DNA, rRNA, tRNA, other RNA, lipids, small

molecules and other molecules. Unfortunately, there are too few

yeast MTases to successfully train a classifier predicting more

detailed substrate categories. For example, in the training set of 61

known yeast MTases there were only three histone MTases. On

the other hand, there are more known MTases in human, for

example there are already 26 known human MTases methylating

histones [28], so we expect these more detailed predictions to be

successful in the case of human proteins. Adapting our predictor to

include more categories is rather straightforward, and can be

achieved by either considering more probabilities (e.g. 10 instead

of 3) as n in Eq.3; or by employing a hierarchical prediction

method. In the latter case, in the first step, the same or similar

general probabilities would be predicted (protein, RNA, other or

protein, RNA, DNA, other), and in the next step finer prediction

will be made within each top-level category, (for example, what

are probabilities of a given MTase to methylate histone proteins,

ribosomal proteins or other proteins, given that it is predicted to

methylate protein).

B. Predicting different types of substrate classes for

MTases. Modifying our framework to predict very different

substrate categories (e.g. whether the methylated atom is sulfur,

nitrogen, oxygen or carbon) is also technically straightforward.

The probabilities of a given MTase methylating sulfur, nitrogen,

oxygen or carbon atoms should be used instead of the probabilities

of its methylating protein, RNA or other molecule. However, since

this substrate classification according to the methylated atoms is

very different from our protein/RNA/other classification, the

input properties of the model should be selected de novo, by

screening them for the correlation with the methylated atom, as

described in the Materials and Methods section.

C. Modifying the model to predict substrate specificities

of other enzymes. The presented mathematical framework is

very flexible and can be used to predict the substrate of other

Figure 4. Experimental verification of substrate specificities predicted for putative MTases. (A) YOR021C and (B) YNL092W are protein
MTases. Recombinant proteins (MTases) were incubated with native yeast extracts from the respective knockout strains (DMTase ext) and [3H]
AdoMet (lane 1). Reaction products were resolved on SDS-PAGE gel and exposed to tritium screen. To test the specificity of the reactions, analyzed
proteins were also incubated with yeast extract from the wild-type strain (wt ext) and [3H] AdoMet (lane 2). As a control, yeast extracts from knockout
and wild-type strains were incubated with [3H] AdoMet only (lanes 3 and 4). In addition, selected proteins were also incubated with [3H] AdoMet only
(lanes 0). HMT1 (a protein MTase) and TRM4 (an RNA MTase) were used as positive and negative controls, respectively.
doi:10.1371/journal.pcbi.1003514.g004
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classes of enzymes. An interesting application would be to infer

substrate specificities for kinases from the FGGY family. Such

kinases can have 9 different functions: L-ribulokinase, erythritol

kinase, L-fuculokinase, glycerol kinase, gluconokinase, L-xylulose

kinase, D-ribulokinase, Rhamnulo-kinase and xylulose kinase [8].

To predict these functions using our approach, one needs only to

substitute ‘‘substratei’’ with ‘‘functioni’’ in formulas (1)–(3), using

n = 9. As a training set, the set of 446 FGGY kinases annotated

with high confidence in [8] should be used. As input model

variables, data used successfully by Godzik and colleagues [8]

should be used: sequence similarity, operons and regulons, known

pathway and functional context, with or without supplementing

with additional data sources.

D. Generalizing the model to predict GO categories. The

proposed framework can also be used to infer GO categories, as in

the CAFA experiment [3]. The primary fundamental difference

stems from the fact that GO categories typically have substantial

overlap, while in our approach the predicted properties are non-

overlapping. To overcome this technical problem, the best solution

appears to proceed as we did with localization data – to convert it

semi-manually into exhaustive and disjoint categories. Specifically,

we clustered GO localization terms for yeast MTases into four

mutually exclusive terms: (i) nucleolus, (ii) nucleus and not nucleolus,

(iii) mitochondrion and not nucleus, and (iv) other. The classification

was motivated by researching correlation between different

localizations and substrate specificity of MTases and also by the

desire to balance the number of proteins in different categories.

Clearly, for general GO function predictions hundreds of GO

categories should be included, but grouping them, as explained

above, into disjoint categories should be helpful. Another possibility

to adapt the presented framework to predict general GO categories

is to construct individual, independent predictors for each major

GO category. That is a much more laborious solution, but should

also yield more accurate results.

General performance considerations
How many substrate categories can be successfully predicted is a

difficult question to answer without specific knowledge of the

system to be studied. It depends not only on the number of known

examples, but also on the distribution of properties of interest. In

our experience, the number of reliably predictable categories

approximates the square root of the size of the training set.

Clearly, predicting fewer classes yields a higher accuracy of

inference. Moreover, it is also important to choose prediction

categories such that they have comparable number of known

examples and no single predicted category includes very few

members. It is also highly desirable that variance within categories

should be limited. In a given case, the feasible number of

categories can be determined empirically, by verifying, as we did,

if predictions are statistically significant as compared with random

predictions. In the case of yeast MTases, they were highly

significant for predicting general substrate specificity (protein,

RNA, other), but as expected not significant for predicting more

detailed substrate specificity (histone protein, ribosomal protein,

other protein, rRNA, tRNA, other RNA, lipid, small molecule,

other), where number of categories exceeds the square root of

number of known examples, our rule of thumb for maximal

number of predictable categories.

In summary, our predictions proved to be very accurate,

yielding an 84% correct prediction rate when tested on a set of

MTases with known substrate specificity. After our predictions

were made, substrate specificities of 9 MTases were fully or

partially confirmed experimentally by us or others [26,27,29], with

results consistent with predictions in 89% (8 out of 9) of the cases.

Our work also aids in understanding how observed general

substrate specificities are achieved at the molecular level. For

instance we show that, surprisingly, a global biophysical property,

pI, impacts MTase substrate specificity more than structural fold.

Likely, pI, which closely correlates with protein charge, retains

such an impact on substrate specificity because it often determines

whether an MTase will bind negatively charged molecules such as

RNA, or typically positively charged protein substrates. We also

show that knowledge of a substrate binding site or corresponding

motifs, traditionally thought to be crucial, is not essential for highly

accurate general substrate specificity predictions for yeast MTases.

Our models combine inference from many sources to estimate

the probabilities of given MTases having various substrate

specificities. Unlike previously used classification schemes

[8,10,11], this approach allows us to predict substrate specificity

not yet observed for a given class of MTases. Indeed, we made one

such prediction: that YOR021C, a SPOUT fold MTase,

methylates a protein. That prediction was very surprising, as all

SPOUT MTases known to date, both in yeast and other

organisms, exclusively methylate RNAs. Strikingly, at the time of

publication of this paper, this prediction has been confirmed both

by us and independently by another group in a newly published

paper [29].

In summary, we have shown that our general probabilistic

framework based on fundamental laws of probability and

information theory is a powerful tool to predict substrate

specificity of yeast MTases. Biological expertise is still very

important in our approach, but it is used only to select the initial

properties plausibly related to the intended prediction; otherwise

the proposed approach is completely objective and self-learning.

Moreover, our model can be easily updated with new knowledge

by repeating the same calculations on the updated data set. To

ensure that our work is broadly applicable, as input to our model

we prioritized organism-independent properties, especially ones

that can be derived from sequence data alone. Therefore, our

approach is also applicable to MTases in other organisms and

with modifications can be used to predict the substrate

specificities of other enzymes, as we discussed in the examples

given above. As in the recent CAFA experiment, we conclude

that the best predictions are obtained from integration of varied

data types. Accuracy of our predictions, as measured by F-

measure employed by CAFA, is much better than that of the best

CAFA predictor. This underscores our belief that a successful

classifier designed to predict more narrow functional categories

should always outperform more general predictors. Given that

accuracy of protein function prediction is crucial for its

usefulness, more focused predictions, of the type we present, will

always be needed. In the future, most successful general function

predictors may employ predictors like ours for predicting function

subcategories.

Materials and Methods

Bayesian model
For each MTase, we calculate the probability that it has a given

substrate specificity (e.g. RNA, protein or other molecule) based

on its properties (Eq. 2):

P substrateijpropertiesð Þ~P propertiesjsubstrateið ÞPsubstrateið Þ
P propertiesð Þ , ð2Þ

For two different properties, for simplicity we assumed that they

are independent. Specifically, the following equation was used:
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P substratei Dproperty1\property2ð Þ~

~
P property1Dsubstrateið ÞP property2Dsubstrateið ÞP substrateið Þ

Pn
i~1 P property1Dsubstrateið ÞP property2Dsubstrateið ÞP substrateið Þ

ð3Þ

where n is the number of substrate specificities.

P(property|substratei) was calculated in different ways depend-

ing on whether the property is of the categorical or continuous

type. (i) For categorical variables (e.g. localization, expression

cluster), we estimated probabilities P(property|substratei) for the

whole population of MTases based on the sample of known

MTases (Text S1. Supplementary text). (ii) For continuous

variables (i.e. pI, expression onset), after dividing them into

several intervals and estimating population values of P(proper-

ty|substratei) as in (i), we modeled them as a smoothed step

function with two to three steps (specified by chosen thresholds)

(Text S1. Supplementary text).

Model selection
We tested 86,000 different combinations of up to 14 property

types (Text S1. Supplementary text) by calculating likelihood of

prediction for MTases with known substrate specificity. The best

model was selected based on the lowest value of AIC, with

AIC = 2k22ln(L), where k is the number of parameters in the

model and L is the maximized value of the likelihood function for

the estimated model [16].

Feature selection for modeling
Types of properties used in our model: structural fold, pI,

expression pattern and cellular localization (Fig. 1 and Table S4),

were selected based on our expert knowledge of which protein

properties are relevant to MTase substrate specificity. Multiple

properties belonging to these four broad categories were screened

based on the statistical significance of their correlation with MTase

substrate specificity. Supplementary table (Table S2) lists all S.

cerevisiae MTases together with considered properties.

Predictions based on sequence similarity
For comparison, we also predicted MTase substrate specificity

using inference of substrate type from the closest paralog.

Specifically, we assigned each yeast MTase a substrate specificity

of an MTase with the same structural fold of catalytic domain and

with the highest sequence similarity. To detect the closest yeast

homolog, we used Meta-BASIC [30], a sensitive tool for

recognition of distant similarity between proteins based on

alignments of sequence profiles enriched with predicted secondary

structure (meta profiles).

Strains and media
The following yeast strains (Euroscarf) were used in this study:

BY4741 (MATa his3D1 leu2D0 met15D0 ura3D0), BY4741

DYBL024W (DTRM4), BY4741 DYBR034C (DHMT1), BY4741

DYGR283C, BY4741 DYIL096C, BY4741 DYKL155C (DRSM22),

BY4741 DYNL092W, BY4741 DYDR316W (DOMS1) BY4741

DYMR310C, BY4741 DYOR021C and BY4741 DYMR310C. The

standard yeast genetic methods and selective growth media were

used, as described in Rose et al. [31].

Protein expression and purification
The following proteins: YBL024W (TRM4), YBR034C

(HMT1), YGR283C, YIL096C, YKL155C (RSM22), YNL092W,

YDR316W (OMS1), YOR021C and YMR310C were produced in

E. coli (BL21-CodonPlus-RIL strain) as N-terminal HIStagSUMO

tag fusions using LB medium and overnight IPTG inductions at

23uC. The bacterial pellets were lysed by sonication in buffer A

(20 mM Tris-HCl pH 8.0, 200 mM NaCl, 10 mM imidazole,

10 mM 2-mercaptoethanol) and purified on His-Trap FF Crude

columns (GE Healthcare). The proteins were further purified by

size-exclusion chromatography on a Superdex 75 10/300 GL

column (GE Healthcare) in buffer containing 10 mM Tris-HCl

pH 8.0 and 150 mM NaCl. Finally, glycerol was added to the

protein aliquotes (10% final concentration), which were then

stored at 280uC. The purity and quantity of the proteins were

assessed by SDS-PAGE.

In vitro methylation assay
Yeast whole-cell extracts were prepared as previously described

[32]. Recombinant proteins (5–15 mg) were incubated with 30 mg

of native yeast extract (from wild-type and respective knockout

strains) in the presence of [3H] AdoMet (0.5 mCi/reaction) in

20 ml of reaction buffer (10 mM HEPES pH 8.0, 2 mM EDTA,

50 mM KCl, 1 mM DTT). Reactions were incubated at room

temperature for 1 hr, diluted 2-fold in Laemmli buffer and

resolved on a 12% SDS-PAGE gel. The gel was stained with

Coomassie blue, dried and exposed overnight to tritium screen.

Supporting Information

Figure S1 The average probabilities for MTases pre-
dicted correctly and incorrectly. The average probabilities

for MTases from the training set that were predicted correctly (left)

are statistically significantly higher than for those predicted

incorrectly (right). Boxes denote the average probabilities for

dominant function specificity of an MTase for correct and

incorrect predictions, respectively, error bars correspond to the

variance of the mean.

(TIF)

Figure S2 Experimental verification of substrate spec-
ificities. Methylation assays for YGR283C, YMR310C,

YDR316W, YIL096C and YKL155C. Recombinant proteins

(MTase) were incubated with native yeast extracts from the

respective knockout strains (DMTase ext) and [3H] AdoMet (lane

1). Reaction products were resolved on SDS-PAGE gel and

exposed to tritium screen. To test the specificity of these reactions,

analyzed proteins were also incubated with yeast extract from the

wild-type strain (wt ext) and [3H] AdoMet (lane 2). As a control,

yeast extracts from knockout and wild-type strains were incubated

with [3H] AdoMet only (lanes 3 and 4). In addition, selected

proteins were also incubated with [3H] AdoMet only (lanes 0).

HMT1 (a protein MTase) and TRM4 (an RNA MTase) were used

as positive and negative controls, respectively.

(TIF)

Figure S3 Example of our smoothing of pI probability

distribution. We use the function: p1{p2ð Þe{ k x{trð Þ=trð Þ44

zp2

where p1 = 0.75 and p2 = 0.25 are average values of probability of

assuming a given pI value within chosen intervals [4.16,6.95[ and

[6.95,9.69] before smoothing, tr and k depend on the specific

interval chosen, here tr = 4.17, k = 0.99.

(TIF)

Figure S4 Example of our smoothing of probability
distribution of expression onset. Note that since expression

onset is a periodic variable in our case (the data comes from a

periodic metabolic cycle, with period of 300 min), the probability

density function is defined on a circle. Therefore, if only two

intervals are considered, if plotted on a linear axis, it appears as
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three. We used the function: p1{p2ð Þe{ k x{trð Þ=trð Þ44

zp1, where

p1 = 0.22 and p2 = 0.56 are average values of probability of

assuming a given onset value within the chosen intervals [0,10[,

[10,183[ and [183,300[ before smoothing; tr and k depend on the

specific interval chosen, here tr = 86.5, k = 0.99.

(TIF)

Table S1 The models based on a single property.
(DOC)

Table S2 Properties of putative and known MTases
used in the prediction model.
(DOC)

Table S3 The top 20 best models.
(DOC)

Table S4 Description of MTase properties tested in the
model. Beside properties described in the table, categorical

property values were also used as independent properties with

value true or false. Their names are: Ox, R/B, R/C, No cluster,

Rossmann-like, SET, SPOUT, other fold, nucleus, nucleolus,

mitochondrion, other localization. Those binary properties have 5

parameters.

(DOC)

Table S5 Substrate specificity predictions for known
MTases.

(DOC)

Table S6 Substrate specificity predictions for putative
MTases.

(DOC)

Text S1 Supplementary text.

(DOC)
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