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Abstract 

Cadmium (Cd) and nickel (Ni) are two toxic elements which are widespread in the 

human environment, but less recognized as hazardous by the general public. Herein, we 

describe molecular mechanisms of their toxicity towards humans, in the context of general 

chemical and toxicological properties of these metals. Following the introductory remarks, the 

routes of exposure are outlined. The next chapter covers the health hazards posed by cadmium 

and nickel with the main stress placed on diseases like cadmium induced nephropathy, 

reproductive disorders due to cadmium exposure, cadmium related COPD and cadmium 

carcinogenesis. In respect to nickel, acute toxicity, nickel allergy and nickel carcinogenicity 

were described. This overall description provides the basis for a detailed account of molecular 

mechanisms of cadmium and nickel toxicity. They include the involvement of 

metallothioneins and their role in the transport of Cd(II) ions, and the role of oxidative 

damage and DNA repair inhibition in cadmium carcinogenesis. The final issue covered in 

respect to molecular mechanisms of cadmium toxicity is its influence on cellular junctions. 

Molecular mechanisms of nickel toxicity are divided into subjects of nickel allergy and 

several mechanisms related to its carcinogenicity. The discussion is completed by the 

presentation of nickel and cadmium interactions with zinc fingers as a possible common 

ground of their molecular toxicity. 
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1. INTRODUCTION 

Factors eliciting toxicity can be subdivided into physical, chemical and biological 

ones. Physical toxic agents include a wide section of the electromagnetic radiation spectrum, 

from gamma rays through X-rays and ultraviolet, to infrared and microwaves, corpuscular 

radiation, and other physical processes capable of delivering enough uncontrolled energy to 

interfere with biological processes. The term of biological toxic agents covers parasites, 

infectious fungi, bacteria and viruses, as well as toxins produced by infectious organisms in 

vivo. Chemical toxic factors cover the field in-between, with significant overlaps. An example 

from the physics/chemistry borderline is provided by radioactive elements introduced into the 

organism. They generally act as sources of highly energetic photons and particles, which elicit 

cascades of ionizing radiation intermediates. Their actual toxicities will, however, depend on 

their biodistribution, which in turn depends on their non-radiative, chemical properties. 

Moreover, many radioactive elements, uranium for example, are definite chemical poisons as 

well [1]. Toxins present in venoms of such organisms as marine snails or snakes serve as an 

example from the biology/chemistry borderline. These toxins have an obvious biological 

origin and are introduced into their victims by a definitely biological act of stinging or biting. 

From this moment, however, they act solely by the virtue of their chemical properties.  

In molecular terms toxic agents can be divided into organic poisons (such as ethylene 

glycol, sarin, strychnine) and inorganic poisons (such as chlorine, cyanide, phosgen). The 

latter ones are distinguished somewhat formally by the absence of carbon-carbon bonds. In 

this simplistic classification, toxins produced by living organisms generally, but not 

exclusively, belong to the organic chemistry realm. Proteins (e.g. botulinum toxin or ricin) or 

alkaloids (e.g. atropine or tubocurarine) are typical organic toxins, but, for example, the 

toxicity of cyanogenetic glycosides, such as amygdalin, is due to the release of a classical 

inorganic poison, hydrogen cyanide, from their molecules upon the action of β-galactosidase.  
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Toxic metal ions have a specific property that differentiates them from all other 

poisons. Inorganic or organic toxins are multiatomic molecules, which, at least in principle, 

can be detoxicated by chemical modification, in particular by decomposition into non-toxic 

derivatives. A toxic metallic element cannot be transmuted into another, non-toxic one by 

biological means. (Transmutation is an alchemy term for changing lead into gold. In modern 

terms transmutation is equivalent to nuclear reaction which can be accomplished in a 

controlled fashion in an accelerator, and nuclear explosion is an example of uncontrolled 

transmutation). Therefore, the means of defense against toxic metal ions are seriously limited, 

only to immobilization or excretion. Furthermore, a toxic metal ion can act by many 

molecular pathways. Being indestructible, it can migrate from one interaction with a protein, 

nucleic acid or small molecule to another. Many toxic metal ions act indirectly, as catalysts 

facilitating the formation of inorganic or organic toxins. 

In this context, we need to make a note regarding two styles of naming partners in 

such interactions. A biochemical convention uses the term ligand for small molecules, 

including metal ions, that bind to macromolecules, such as proteins. In coordination 

chemistry, however, the term ligand is used to label all molecules, big or small, which form 

bonds with metal ions, assumed to be the center of the complex. The latter convention seems 

to be more appropriate for describing interactions of toxic metals with biomolecules. Toxic 

metals usually do not have their specific physiological binding partners (they are not 

dedicated to macromolecules of any specific kind). Instead, they are “free to choose” - it is 

their binding preferences and that define toxic interactions. 

The toxicity of metal ions is aggravated by the fact that many of them are either absent 

from the natural environment, or present there in such chemical forms that make them 

inaccessible for a living system. Such metals are particularly dangerous, when introduced into 

the environment or mobilized from hitherto safe stores as a result of industrial activity, 
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because no defense mechanisms had a chance to evolve against them. Aluminum poisoning of 

fish in Northeast US and Scandinavian lakes several decades ago, caused by the dissolution of 

soil aluminosilicates by acid rain of industrial origin is a classical example of such an event 

[2, 3]. 

Mercury and lead are two very toxic elements, which have been present in human 

environment in very large quantities, due to their widespread technological usage since 

antiquity [4]. The increasing awareness of their toxicity, particularly neurotoxicity in children 

[5, 6], led to a gradual withdrawal of these metals and their compounds from materials and 

objects accessible to general public. Lead was first to made go. Lead metal water pipes (the 

memory of this technology frozen in the word plumber, from Latin plumbum for lead) and toy 

soldiers, pigments in paints, such as yellow lead(II) chromate (PbCrO4) and white lead(II) 

carbonate (PbCO3), and tetraethyllead additive to gasoline [7] have been gradually vanishing 

from the human environment in most countries. Somewhat surprisingly, extremely toxic 

mercury is slower to depart. Recent EU decisions to promote energy saving light sources may 

even result in the increase of environmental mercury burden. However, such potentially 

hazardous mercury applications, as amalgam dental fillings [8], spill-prone mercury 

thermometers, and mercury-containing drug preservatives (sodium ethylmercurithiosalicylate 

- thimerosal) [9] are being gradually removed from the global market (the latter has been 

banned in EU since 2001, but is still approved in the USA and many other countries). 

The aim of this review is to summarize the current state of knowledge about molecular 

mechanisms of toxicity of two other, very toxic metals: cadmium and nickel. These two 

elements are abundant in the human environment, largely due to their applications in the 

articles of everyday use. The amount of evidence of their toxicity and carcinogenesis at low 

doses is rising continuously. Health hazards to large communities due to current exposures to 
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these two elements are likely. Yet, the awareness of their toxic properties seems to be limited, 

compared to that related to lead and mercury.  

2. CHEMICAL PROPERTIES AND ROUTES OF EXPOSURE TO CADMIUM AND 

NICKEL COMPOUNDS 

2.1. Chemical Properties of Cadmium 

Cadmium, element no. 48, belongs to the 12th group of the periodic table (together with zinc 

and mercury), due to its electron configuration [Kr]4d105s2. Natural cadmium is a mixture of 

eight isotopes with isotopic masses between 106 and 116. Its standard atomic weight is 

112.41 Da. In its elemental metallic form Cd is soft and malleable at room temperature. It 

undergoes passivation in contact with oxygen, being covered with a layer of cadmium oxide. 

Chemistry of cadmium includes 0, +1 and +2 oxidation states, however, only Cd(II) 

compounds are stable under ambient conditions. In complexes Cd(II) coordination numbers 

vary from 2 to 8, with 4 (tetrahedral) and 6 (octahedral) being the most frequent ones [10]. 

The d-electron shell of Cd(II) is filled, therefore, its chemical behavior is similar to that of 

main group rather than transition metals. Cd(II) is a moderately soft metal ion, forming 

particularly strong bonds with thiolates, but can also interact effectively with oxygen and 

nitrogen donors [11, 12]. Consequently, CdS and CdO are the most important binary Cd(II) 

compounds. Thiolate Cd(II) complexes are tetrahedral, and isostructural with Zn(II) 

complexes [11, 13]. Higher coordination numbers are encountered in oxygen donor 

environments, by analogy to Ca(II) [11]. 

2.2. Chemical Properties of Nickel 

Nickel, element no. 28 belongs to the 10th group of the periodic table (together with 

palladium and platinum), due to its electron configuration [Ar]3d84s2. Natural nickel is a 

mixture of five stable isotopes with isotopic masses between 58 and 64, with 58 and 60 being 
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most abundant. Its standard atomic weight is 58.69 Da. Elemental nickel is a white metal with 

a yellowish shade. It is malleable, melts in high temperatures and is ferromagnetic up to 

627 K (Curie temperature for nickel). Metallic nickel is resistant to corrosion in humid air. In 

chemical compounds nickel can be encountered at oxidation levels from -1to +4, but Ni(II) is 

by far the most important oxidation level at ambient conditions. Its most common 

coordination numbers are 4, 5, and 6 [10]. The existence of readily interconvertible high spin 

and low spin Ni(II) compounds is the most characteristic feature of Ni(II) chemistry, because 

of the accompanying changes of color (Ni(II) termochromism). High-spin Ni(II) complexes 

are usually octahedral (six-coordinate), the low spin complexes are typically square-planar 

(four-coordinate). Much less frequent square-pyramidal (five-coordinate) species occur for 

both high- and low-spin configurations. Ni(II) readily accepts oxygen, nitrogen and sulfur 

ligands. Harder ligands, like water or carboxylate oxygens, stabilize high-spin complexes, 

whereas softer donors, like thiolate sulfurs promote the formation of low spin complexes [13]. 

Low oxidation levels, -1 and 0, are encountered in organometallic complexes (defined 

as those containing metal-carbon bonds). The very stable Ni(0) tetracarbonyl is the most 

important of them. Ni(I) complexes are very instable in air. This oxidation level is stabilized 

by thiolate coordination and is known mostly from bioinorganic studies of redox enzymes of 

anaerobic microorganisms [14]. Ni(III) is a strong oxidant, stabilized by strong nitrogen 

ligands [15, 16]. Compounds of the even stronger oxidant, Ni(IV) are very rare and instable. 

Characteristically, the spin state of a Ni(II) complex controls its redox properties: the Ni(I) 

and Ni(III) state are accessible only from the low-spin complexes, while Ni(IV) complexes 

can only be obtained from high-spin species [17]. This phenomenon is due to Jahn-Teller 

effect, which precludes the octahedral geometry for d-electron configurations of d7 and d9, 

corresponding to Ni(III) and Ni(I), respectively.  

2.3. Exposures to cadmium 
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Cadmium is widespread in the natural environment at low levels, comprising ca. 

1.5 × 10-5 % of the Earth crust. It accompanies mainly zinc, and also calcium (e.g. otavite, 

CdCO3) [18, 19]. Grenockite, CdS, the most important specific cadmium mineral, is very rare 

in nature, and industrial cadmium is obtained as a by-product of refinement of copper and 

zinc. Cadmium is not considered to be essential for life in general. However, an interesting 

exception is provided by marine diatoms grown under zinc deficiency. The addition of Cd(II) 

can restore growth in these organisms, apparently by taking up key enzymatic functions of 

Zn(II), including that in carbonic anhydrase [20, 21]. As mentioned above, due to chemical 

similarities with Ca(II), Cd(II) is sometimes present in limestone soils and often accompanies 

phosphates. Several anthropogenic sources of Cd(II) are relevant for the general population. 

Large-scale burning of materials containing cadmium is one of them. Energetic coal burning 

spreads very fine dusts and ashes containing cadmium oxide and inorganic salts over large 

areas [22]. There is, however, a very large variation of cadmium contents depending on 

geological origin of the solid fossil fuel [23]. Municipal solid waste incinerators (MSWI) 

appear to be important sources of cadmium enriched fly ash. Their overall emissions are much 

smaller, than the energetic ones, but MSWI are often located close to human settlements [24]. 

The speciation of cadmium in MSWI fly ashes is more complex, with “hot-spots” made of 

water soluble, and thus readily bioavailable cadmium halides and sulfate (CdCl2, CdBr2, 

CdSO4), accompanied by less bioavailable cadmium silicate, oxide and metallic cadmium 

[25-27]. Further sources include phosphate fertilizers, which may contain up to 0.01% of 

cadmium, depending on the geological source of the phosphate [28], and calcium carbonate 

used for recultivation of acidified soils and waters (however, the liming process may actually 

reduce bioavailability of cadmium from natural acid soils [29]). Industrial emissions of 

cadmium are related to its usage in the manufacturing of Ni-Cd accumulators, pigments, 

alloys (addition of Cd lowers the melting point) and organic polymers (e.g. Cd(II) compounds 
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are used as stabilizers in plastics such as PVC). Some plants, including tobacco, are efficient 

Cd(II) bioaccumulators. As a result, tobacco smoking is perhaps the most relevant source of 

cadmium exposure to persons not exposed occupationally [30]. Both first-hand and 

second-hand smoke is dangerous, as air exhaled by a smoker is enriched in cadmium [31].  

Accumulation in farm animals is strongly organ-specific, with kidney as a prime target 

[32]. Doses of cadmium at the level of 1–3 µg Cd per day approximately, ingested with food 

and drink in industrialized areas, such as European Union, are not considered hazardous [33, 

34]. However, the bioavailability of food cadmium depends on a person’s nutritional status. 

The intestinal absorption of cadmium, generally proportional to the concentration in the diet, 

is reduced, if the nutritional status of zinc, iron or calcium of a person is high, and 

correspondingly, the low general nutritional status of these metals enhances cadmium 

absorption [34]. A significant consumption of specific foods may affect both factors. For 

example, rice accumulates cadmium into grain, when available, but excludes zinc, even when 

grown on soils rich in zinc. Consumption of such rice leads to zinc/iron malnutrition and 

increase of cadmium intestinal absorption and accumulation. On the other hand, the 

consumption of foods rich in cadmium, iron and zinc, such as seafood, does not increase 

cadmium absorption [35]. This fact is especially important with respect to premenopausal 

women, who commonly have low body iron stores [35]. Recent studies indicate that divalent 

metal transporter-1 (DMT-1) is partially, but not exclusively responsible for increased 

cadmium absorption in the presence of a nutritional deficit of other metal ions transported by 

DMT-1 [36].  

Occupational exposures to cadmium relevant to human health are mainly of 

respiratory nature, and are related to mining or manufacturing of batteries and pigments. The 
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average consumption of cadmium with tobacco smoke, ∼1–3 µg of Cd per pack of cigarettes 

is considered to be of a higher toxicological importance. The cadmium turnover in the human 

body is slow, with a biological half-life of ∼10–20 or more years, significantly higher in 

women [37, 38]. Consequently, cadmium tends to accumulate in human body with age, and 

heavy smokers accumulate significantly more cadmium than non-smokers [37-39]. Also, the 

environmental exposure in childhood aggravates the cadmium status in adults [40]. 

2.4. Exposures to nickel 

Nickel is widespread in the environment at levels generally higher than those of 

cadmium. It comprises 0.0084% of the Earth crust, existing mostly as soluble salts (sulfate, 

chloride etc.) and insoluble compounds (sulfides, oxide). Major ores of nickel include 

pentlandite (Fe,Ni)9S8 accompanied by other sulfide minerals, and excavated e.g. in the world 

largest deposits in Sudbury in Canada, Norilsk in Russia and most other mining sites, except 

of New Caledonia, where garnierite (hydrous nickel silicate, (Ni, Mg)3Si2O5(OH), ores are 

exploited. Higher soil Ni(II) levels are encountered locally, due to particular geological 

conditions and in the areas of nickel ore mining and smelting, such as Sudbury [41]. 

Nickel-containing cofactors are crucial components of several enzymes key to 

metabolism of archaeons and anaerobic bacteria, providing redox chemistry for functions 
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such as energy generation and utilization, akin to those assumed by copper enzymes in 

aerobic organisms [14]. Nickel is also essential for legumes, and some other higher plants, 

and for many species of aerobic bacteria and fungi, for another reason. Two Ni(II) ions 

constitute the active site of ureases, a unique class of non-redox enzymes breaking down urea 

to ammonia, which is an appropriate nitrogen source for plants [42, 43]. Apart from this 

specific usage, Ni(II) is bioaccumulated in some plant foods, such as spinach, cocoa and nuts 

[44]. Tobacco also accumulates Ni(II). 

The literature provides conflicting data on the extent of intestinal absorption of Ni(II) 

salts, from as low, at 1–5% of the dose to as high as 20–25% [45-47]. The nutritional status 

and mode of administration seem to be crucial in this respect. The urinary elimination of 

Ni(II) is rather rapid – with a half-life of approximately a couple of days [48]. A high 

proportion of ingested Ni(II) is removed from human body with urine within several days. 

Oppositely to cadmium, the retention of nickel is lower in women than in men, by a factor of 

two [49]. Oral exposure to low doses of Ni(II) compounds is not considered to be hazardous. 

This notion is supported by animal experiments [50]. However, a prolonged elevation of 

respiratory cancer risk in retired nickel refinery workers, has been related to continuous 

presence of accumulated Ni(II) in their airways [51, 52]. The clearance of insoluble Ni(II) 

compounds is about 10 times slower than that of soluble compounds [53]. 

Nickel is listed in many textbooks as an essential microelement in humans, on the 

basis of experiments on animals fed on nickel-deficient diets (reviewed in [54]). The lack of 

specificity of effects observed, seems to be associated with an absence of any nickel-specific 

physiological process in animals, including humans. In contrast, many bacteria, including the 

notorious Helicobacter pylori, which causes peptic ulcers, require Ni(II) for urease, which is 

similar to that described above [55]. The opinion that nickel is required by (not necessarily 

beneficial) bacteria inhabiting our digestive tracts, rather than ourselves, was expressed some 
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time ago [54]. We are not aware of any new facts that could challenge it. On the contrary, all 

recent research, reviewed below, provides evidence for toxic effects of Ni(II) in human body. 

Major industrial uses of nickel include stainless steel and other alloys. White nickel 

alloy with copper (75% Cu, 25% Ni), other Cu-Ni and Cu-Ni-Zn alloys, and sometimes even 

pure metallic nickel are used worldwide for coin production. Other uses of Ni include nickel 

plating of corrosion-prone metals, such as iron, manufacturing of Ni-Cd batteries, and nickel-

based catalysts, including those for industrial hydrogenation processes (such as that of edible 

oil) and carbon nanoparticle manufacturing.  

Occupational exposure to nickel compounds is mostly respiratory, similarly to 

cadmium. It is associated with nickel mining and refinement, electroplating, metallurgy of 

nickel-containing alloys and stainless steel welding. Another type of respiratory exposure, 

affecting the general public, is due to residual fly ash containing bioavailable Ni(II) 

compounds [56]. There are two types of such ash. Residual oil fly ash (ROFA) is generated in 

the course of combustion of heavier fractions of oil products in Diesel car engines and power 

plants. Its nickel contents can be as high as 1.5% [57], and the resulting air level of nickel in 

large cities and industrial areas is increased by a factor of ten to twenty, compared to suburban 

areas [58]. Some coal burning electric power plants and MSWI also emit fly ash containing 

significant amounts of nickel [59, 60]. The presence of nickel in oil and coal reflects its 

physiological functions in anaerobic bacteria and plants, respectively. Nickel is present in 

ROFA predominantly as water-soluble NiSO4, with varied amounts of insoluble salts, 

including little or no sulfides [57, 61]. In contrast, other types of fly ash contain mainly nickel 

oxide and sulfides, followed by insoluble Ni(II) compounds and metallic nickel, and generally 

little amounts of NiSO4 [60, 62]. Nickel is bioavailable from ROFA to airways and may be 

partially responsible for acute toxic effects of ROFA inhalations, as determined using 

experiments on cell lines and laboratory animals [63-68]. These studies point, however, 
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towards vanadium(IV) and vanadium(V) compounds, which always accompany nickel in 

ROFA, as the major source of direct oxidative damage to cells, observed as a result of acute 

exposure. 

3. HEALTH HAZARDS DUE TO EXPOSURES TO CADMIUM AND NICKEL 

COMPOUNDS 

3.1. Health hazards related to cadmium exposure 

Nephropathy associated with the characteristic cadmium proteinuria is the most 

prevalent result of cadmium intoxication, observed for all routes and modes of exposure [69, 

70]. Acute cadmium intoxications are rare and confined to occupational accidents. Acute 

respiratory exposure to airborne cadmium or cadmium oxide gives symptoms of cadmium 

fever, similar to that of much more common zinc fever but much more persistent, due to a 

slow clearance of CdO from the lung tissue. However, for cadmium, such exposure may also 

result in lung fibrosis, atherosclerosis of pulmonary arteries, and nephropathy [71]. Acute oral 

poisoning may evoke circulatory insufficiency [72]. Major health hazards of chronic 

respiratory exposure to cadmium include carcinogenesis in respiratory tract and internal 

organs, as well as reproductive disorders, such as derangement of spermatogenesis and 

impairment of hormonal balance [73-75]. Osteoporosis is a very characteristic effect of 

chronic oral intake of large doses of soluble cadmium compounds, accompanying 

nephropathy [76, 77]. The itai-itai disease was described in Japan in areas heavily polluted 

with cadmium-rich industrial waste. This condition affected mostly post-menopausal women, 

prone to osteoporosis. Despite a rather weak ability of cadmium to substitute calcium in bones 

directly, at levels 30-fold lower from those detected in the liver, the significant bone mass loss 

occurred. This led to the loss of the bone resistance to weak mechanical stress and multiple 

recurring fractures. The mechanism of this process is likely based on the interference with 

calcium metabolism in bone remodeling cells – osteoblasts and osteoclasts [76]. The 
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improved environmental protection makes itai-itai largely a historical condition. Notably, 

long-term Japanese studies indicated that there was no elevation of cancer incidence in 

populations suffering long-term exposure to environmental cadmium [78]. 

3.1.1. Cadmium nephropathy 

 Kidneys are the main and ultimate cadmium target in the human body. This feature of 

cadmium toxicity is seen most clearly in chronic exposures to low levels of cadmium, which 

are most relevant to the general public. Cd(II) nephrotoxicity is observed with no regard to the 

intake route, be it oral or respiratory. It is characterized by a specific form of proteinuria, 

which manifests itself clinically upon a prolonged duration of exposure, typically of twenty 

years or more [79]. Tubular reabsorption impairment in kidneys results in the appearance of 

low molecular weight proteins and metabolites in urine, while glomerular dysfunction leads to 

the leakage of high molecular weight proteins [79, 80]. The proteinuria is generally 

irreversible, despite of the cessation of exposure, except for very mild cases. This fact is 

related to the very long biological half-life of cadmium, mentioned above [37, 38]. The renal 

abnormalities are accompanied by elevated Cd(II) levels in the kidney tissue. The element is 

then also present in urine [80-82].  

There is a threshold level for cadmium in the renal cortex, above which the tubular 

damage occurs. The older data indicated the threshold value of approximately 200-250 ppm 

[81]. Now the limit has been lowered to ca. 150-200 ppm [83]. The levels of cadmium in 

whole blood, kidney, liver and urine of exposed subjects are correlated, signifying high 

mobility of cadmium among the compartments of human body. Cd(II) is transported to kidney 

as a complex with metallothionein (MT), a metal ion storage protein. The exchange of this 

complex between kidney and liver is thought to be responsible for the paradoxical lowering of 
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kidney cadmium burden along with the progression of renal dysfunction [84]. There are, 

however, no epidemiologic data that would link cadmium intoxication with liver disease.  

Recent studies indicate that cadmium exposure may be linked to diabetic nephropathy, 

and to diabetes itself. Epidemiology suggests that the body Cd(II) burden may exacerbate 

kidney damage due to diabetes, and diabetes may aggravate cadmium nephropathy. Animal 

studies confirm these observations and demonstrate a direct action of Cd(II) on Langerhans 

islets, resulting in the pancreatic cadmium accumulation and decrease of blood insulin [85]. 

These results suggest that cadmium toxicity is more widespread and more severe in broad 

populations than hitherto estimated. 

3.1.2. Reproductive disorders due to cadmium exposure  

Exposure to cadmium causes reduced male fertility (reduced sperm count, and poor 

semen quality), disruption of blood-testes barrier (BTB), germ cells loss, testicular edema, 

hemorrhage, necrosis, and, eventually, sterility [86]. In women cadmium influences oocyte 

maturation, oocyte pick-up and development of the pre-implantation embryo, which have 

obvious clinical implications. As mentioned above, tobacco smoke is one of the main sources 

of cadmium in the human organism. Consequently, the concentration of Cd(II) in the 

follicular fluid of female smokers undergoing in vitro fertilization was reported to be elevated 

by 15% compared with non-smokers [87]. Elevated Cd(II) levels have also been associated 

with a higher risk of ectopic pregnancy and with recurrent miscarriages. Cadmium exposure is 

also teratogenic [87]. 

The reproductive toxicity of Cd(II) is largely related to its hormone mimicking 

activity. Cadmium binds to estrogen (ER) and androgen (AR) receptors. Ovariectomized 

female rats exposed to cadmium showed increase of the uterus weight and increased growth 

of mammary glands. The effects were suppressed by administration of an antiestrogen [88]. In 
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castrated rat males, Cd(II) had an androgenic effect also suppressed by administration of the 

antiandrogen. Therefore, the data suggest that cadmium is a potent endocrine disruptor acting 

via binding to hormone receptors [88]. Recent cell line experiments also provide evidence for 

the interference of Cd(II) with estrogen receptor related signal transduction pathways [89].  

3.1.3. Cadmium and COPD  

Chronic obstructive pulmonary disease (COPD) is a life threatening disorder of 

pandemic proportions, considered as one of the major global causes of morbidity and 

mortality [90]. COPD involves small airways disease, mucus hypersecretion, and chronic 

bronchitis, which lead to the progressive impairment of lung function, decrease of airflow and 

shortness of breath The disease, clearly associated with smoking, is likely to have multiple 

triggering factors, related to the exposure to environmental pollutants, including metal ions 

[91]. There is also evidence for the relationship of COPD with the occupational exposure to 

metals [92]. Exposure to cadmium, measured by urinary cadmium excretion, has recently 

been correlated with the severity of pulmonary function decrease, and there is mouting 

evidence for the causative relationship between the cadmium exposure and COPD [93, 94]. 

3.1.4. Cadmium carcinogenesis 

The World Health Organization’s International Agency for Research on Cancer 

(IARC) rates chemical elements and compounds according to their carcinogenicity. Group 1 

includes confirmed human carcinogens, and groups 2A and 2B include substances assigned as 

probable and possible carcinogens, respectively. Group 3 contains chemicals declared non-

carcinogenic according to the current state of knowledge [95]. Cadmium and its compounds 

were declared as definitely carcinogenic (Group 1) in 1993, on the basis of substantial 

epidemiological evidence of lung cancer incidence in workers exposed occupationally to 

cadmium-containing fumes [74]. These data were complemented by the abundant evidence of 
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pulmonary adenocarcinomas in rats which inhaled either soluble cadmium chloride aerosols 

or insoluble cadmium oxide fumes [96, 97]. Occupational and non-occcupational cadmium 

exposure has also been implicated in the etiology of transitional cell carcinoma of the urinary 

bladder [98, 99]. Smoking-related cadmium seems to be responsible for the most, or even all 

excess risk of this cancer [100, 101]. These epidemiological studies are supported by cell 

culture studies, which demonstrate the ability of Cd(II) ions to directly cause the malignant 

transformation of bladder epithelial cells [102].  

Weaker, but still accumulating evidence is available for the causative involvement of 

cadmium in carcinogenesis in several other human organs. While epidemiological studies of 

prostate cancer etiology yielded conflicting results with respect to cadmium [103], animal and 

cell culture studies support the involvement of cadmium in the development of prostate 

adenocarcinoma [96, 104-106]. Results of a recent analytical study indicate that the cadmium 

accumulation does not differentiate the prostatic cancer from the benign prostatic hyperplasia 

(BPH), both significantly elevated above the control level, but suggest that the elevated MT 

level, observed specifically in BPH could provide protection against malignancy [107].  

The incidence of pancreatic cancers is related to cigarette smoking, chronic 

pancreatitis, diabetes and occupational exposures to toxins and heavy metals. Cadmium is 

represented in the first and the last of these factors, and has been implicated in the etiology of 

diabetes and diabetic nephropathy [85, 108]. A significant increase of blood cadmium was 

also recorded in pancreatic cancer patients [109]. These coincidences warrant further studies 

within this research area, which is very important due to the extreme malignancy and very 

low survival ratio in pancreatic cancer patients [110].  

Renal cancer also seems to be associated with occupational exposure to cadmium 

[111, 112]. The nephropathy develops into kidney cancer rarely, indicating a requirement for 
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additional causative factors for the latter to occur. Per analogy with prostate, is seems likely 

that cadmium carcinogenesis in kidney also depends on the intracellular level of MT.  

Interestingly, cadmium has not been demonstrated directly to cause breast cancer, in 

spite of its estrogen mimicking activity, which seems to predestinate it to such an ability. This 

striking contradiction has been ascribed to antiangiogenic properties of Cd(II) [113]. On the 

other hand, epidemiological studies indicate an association between the increased incidence of 

breast cancer and occupational cadmium exposure [114]. Also this area of research can be 

expected to grow rapidly, due to the populational significance of breast cancer.  

Recently, an epidemiological correlation of long-term non-occupational cadmium 

exposure with a slightly increased risk of endometrial cancer was demonstrated in post-

menopausal women [115]. An association of this fact with hormone-mimicking cadmium 

activity is very likely. 

3.2. Health hazards related to nickel exposure 

Health effects exerted by exposure to nickel and its compounds can be subdivided into 

three major groups: acute toxicity related to respiratory or oral exposure, carcinogenesis in 

respiratory organs, resulting from chronic inhalation of nickel compounds, and nickel allergy, 

related to dermal and oral exposure. Other health hazards include hard metal asthma, which 

has a nickel-specific component [116] and teratogenicity, observed in extreme industrial 

exposures, but not pronounced at lower exposures near nickel refineries [117, 118].  

3.2.1. Acute nickel toxicity 

Nickel tetracarbonyl Ni(CO)4 is a nickel compound responsible for the majority of 

known cases of acute nickel toxicity. It is a gas formed upon the direct reaction of CO (carbon 

monoxide) gas with metallic nickel, used for obtaining very pure nickel for industrial 
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applications in Mond process [119]. Human exposure to Ni(CO)4 occurs only occupationally, 

as a result of rare industrial accidents [120, 121]. The immediate symptoms include 

respiratory tract irritation and headache, followed by an asymptomatic period and delayed 

pulmonary symptoms similar to a pneumonia, accompanied by cardiological and cerebral 

problems. Depending on the dose and individual susceptibility, the exposures may be deadly, 

and in the survivors the long term neurasthenic syndrome and weakness may last for as long 

as six months [121]. On the other hand, the accidental ingestion of water containing a high 

concentration of soluble Ni(II) salts by a group of workers resulted in transient symptoms, 

largely of gastrointestinal character. No long-term health problems were detected in this group 

[122]. 

3.2.2. Nickel allergy 

Nickel is the most frequent of all allergens causing allergic contact dermatitis [123]. 

Consequently, nickel allergy is a worldwide health problem. It affects one of every six 

persons on average. Women exhibit hypersensitivity to nickel four times more frequently than 

men [124]. This prevalence is currently thought to result from the frequent childhood 

exposure of women to nickel containing fashion jewelry [125]. European Union 

acknowledged nickel allergy to be a major social health problem for European societies and 

issued a directive posing limits on nickel release from materials coming into prolonged 

contact with skin [126]. In the light of recent epidemiological data indicating the increase of 

incidence of nickel hypersensitivity in general population, and particularly in children in 

North America, a similar regulation has been proposed for the USA [127-129]. Allergic 

contact dermatitis to nickel (Ni-ACD) is the most frequent clinical manifestation of nickel 

allergy, but general allergic symptoms, like conjunctivitis, rhinitis, bronchial asthma, or 

disseminated eczema are also prevalent. There is no medication available, and the only way to 

alleviate the symptoms is to avoid contact with objects made of stainless steel and other 
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nickel-containing alloys, including tools, door handles, some arts of silver jewelry, coins and 

many others. Coins in particular are difficult to avoid, and they are usually made of alloys 

with high Ni(II) content. The common name “nickel” for the American 5 cent coin made of 

the typical 75% Cu, 25% Ni alloy is indicative of a long history of this issue, but it was Euro 

coins, which contain the same alloy in their white parts and a 5% Ni alloy in their yellow 

parts, that attracted public attention more recently [130, 131]. A severe manifestation of 

nickel allergy has therefore obvious deleterious consequences in life and work, and there is 

urgent need for active remedies against this disease. 

3.2.3. Nickel Carcinogenesis 

Carcinogenicity of nickel was first reported in the occupational context, and solid 

medical evidence on incidence of cancer resulting from nickel exposure remains to be largely 

associated with workplace exposure [54, 132, 133]. The first reports regarded rather 

spectacular cancers of the nasal cavities in workers employed in a nickel refinery (Mond 

Nickel Works in Clydach, Wales), soon to be complemented with lung cancers [134]. The 

incidence of malignancies was horrific: 35.5% of employees died of these cancers, as 

compared to 1.5% incidence in coal miners [135]. In the light of these findings, nickel-related 

cancer of upper and lower airways has been the first officially recognized occupational 

disease, in Great Britain and worldwide [132, 133]. The locations of malignancies clearly 

suggested the inhalatory route of exposure. Subsequent epidemiological studies confirmed 

exposure to airborne Ni(II) compounds as the cause of cancer in chronically exposed 

individuals [136, 137]. Dusts containing insoluble compounds, mostly Ni3S2, NiS, and NiO, 

as well as aerosols of soluble Ni(II) salts bear a risk of cancer, confirmed by the IARC 

assignment of these compounds as confirmed (Group 1) human carcinogens. Metallic nickel 

dusts are currently rated as possibly carcinogenic to humans (IARC Group 2B) [132]. 
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There is no single type of tumor resulting from inhalatory Ni(II) exposures. A careful 

histopathological study of a large number of respiratory tract tumors developed in nickel 

refinery workers in Wales, Canada, and Norway indicated a prevalence of squamous cell 

carcinomas, followed by a number of other carcinomas, with a small incidence of 

adenocarcinomas and several other tumor types [138].  

The location of tumors within airways was found to be related to the size of nickel-

containing particles, due to their ability to penetrate the airways. The largest, millimeter size 

grains are deposited in the nose and mouth, while the finest of micrometer and smaller sizes 

can penetrate all the way down to the lungs [139]. 

While causative relations between nickel exposure and other malignancies, e.g. larynx, 

kidney, prostate, and stomach carcinomas and soft-tissue sarcomas were suggested, they have 

not been demonstrated in humans in a statistically relevant fashion [133]. On the other hand, 

there is some evidence for such malignancies in laboratory animals, as reviewed [54, 133]. 

Nickel compounds induce local tumors at virtually all sites of application. Water-insoluble 

sulfides and oxide are more active than soluble salts, which is due to a rapid clearance of 

soluble Ni(II) compounds from the site of application [140, 141]. Interestingly, intraperitoneal 

injections of soluble Ni(II) acetate resulted in both local and distant tumorigenesis, including 

lung tumors in strain A mice and renal cortical adenomas in F344 rats, the latter, when 

accompanied by a prolonged administration of sodium barbital, a cancer promoter [142, 143]. 

Intraperitoneal administration of Ni(II) acetate in pregnant F344 rats produced pituitary 

(without barbital) and renal (with barbital) tumors [144]. As mentioned above, the 

administration of soluble Ni(II) salts in drinking water did not yield tumors in experimental 

animals [50]. 



24 

 

A phenomenon of transgenerational, paternally inherited carcinogenesis was noted in 

epidemiological studies of children whose fathers were occupationally exposed to toxic metal 

mixtures (e.g. welders) [145]. Nevertheless, the direct association of this rare phenomenon 

with exposure to nickel specifically, however likely, seems premature at this moment.  

Endoprostheses and other implantable surgical devices made of nickel-containing 

alloys have been suspected to cause tumors locally due to nickel leaking by corrosion in body 

fluids [133, 146]. The evidence has not been ruled conclusive, but convincing enough to 

assign these implants to Group 2B by IARC [147]. These alloys have been subsequently 

phased out in favor of alloys based on metals considered non-carcinogenic, ceramics, or 

materials coated with biocompatible organic polymers.  

As mentioned above, general populations are exposed to nickel compounds in food, 

tobacco, and urban air. These exposures have not been considered to pose nickel-specific 

health hazards, as no direct epidemiological evidence for such is available. Nevertheless, the 

combination of facts reviewed briefly above suggests that such analysis might be worthwhile. 

In particular, the chemical forms of nickel in inhaled particulate matter, such as ROFA, are 

sufficiently similar to those considered carcinogenic in the occupational setting. Of course, 

doses of nickel inhaled occupationally are much higher than the environmental ones. The 

levels of total nickel in lung wet tissue were found to be higher than controls by a factor of 

112–5800 in nickel refinery workers and by a factor of 500 in stainless steel welders [148, 

149]. However, the populations exposed are about as much bigger, and huge differences in 

individual susceptibilities to nickel carcinogenicity are evident. Further studies are definitely 

required to clarify the issue of environmental hazard of airborne nickel, but this issue should 

not be neglected, as stated already fifteen years ago by Canadian Environmental Health 

Directorate [150]. 
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4. MOLECULAR MECHANISMS OF CADMIUM AND NICKEL TOXICITY 

4.1. Molecular Mechanisms of Cadmium Toxicity 

The molecular toxicology of cadmium is an interplay between extracellular transport 

phenomena, which govern the distribution of this metal in the organism and intracellular 

interactions, predominantly involving proteins. The following paragraphs cover three major 

areas of cellular and molecular research in this area: metallothioneins and cadmium 

redistribution, mechanisms of cadmium carcinogenesis, and effects of cadmium on cellular 

junctions.  

4.1.1. Metallothionein and extracellular transport of Cd(II) ions 

Both inhalatory and gastrointestinal ways of exposure to cadmium yield, eventually, 

Cd(II) ions into the bloodstream. Albumin is a major cadmium binding protein of human 

serum, capable of simultaneous binding of two Cd(II) ions [151, 152]. Other proteins, 

including transferrin and α-2-macroglobulin were also implicated in blood transport of 

cadmium on the basis of in vitro experiments and animal studies [153, 154]. These proteins 

bind Cd(II) ions with their oxygen and nitrogen donors, despite the preference of Cd(II) ions 

for thiol ligands. This is due to a low availability of thiol ligands in the bloodstream. The 

resulting binding is in the micromolar affinity range, enabling facile and rapid (in a minutes to 

hours timescale) transport of Cd(II) ions to the liver [155]. Two pathways of further Cd(II) 

transport are known. Intracellularly, Cd(II) spontaneously forms relatively strong complexes 

with reduced glutathione (GSH, γ-Glu-Cys-Gly) [156, 157]. The Cd(GSH)2 complex is a 

molecular mimic of glutathione disulfide (GSSG) and is exported out of the cell along with 

GSSG, through the ABC transporter system [158]. In liver, this pathway results in the 

secretion of cadmium into the bile, and its transfer down the digestive tract. This cadmium 

fraction is largely excreted with the feces, as cadmium reabsorption in the gut is low [159].  
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An alternative pathway includes the Cd(II) binding to metallothioneins (MTs). MTs 

are a family of small proteins of ca. 60 amino acids, very rich in cysteines (20 residues), 

involved in intracellular storage and buffering of Zn(II) and Cu(I) ions [160, 161]. There are 

three major human MTs: MT1, MT2 and MT3. The former two are expressed in many organs, 

including the liver and kidney, MT3 is brain-specific. The Zn(II)-saturated MT contains seven 

metal ions, forming two metal-sulfur clusters: Zn3S9 and Zn4S11. The recent detailed study on 

Zn(II) binding to MT2 revealed that the binding is fully cooperative and stronger for the four-

zinc domain, while the three-zinc domain demonstrates less-cooperative and weaker 

interactions [162]. 

The Cd(II) binding to MT is nearly isostructural with the Zn(II) binding, and mixed 

Zn/Cd forms are known to exist in vivo [163, 164]. Cd(II) ions induce expression of MT1 and 

MT2 in hepatocytes, so that a 24 hour pretreatment with subtoxic cadmium doses protects 

liver from injury due to a subsequent treatment with a higher dose of Cd(II) [165, 166]. The 

resulting cadmium metallothionein (Cd-MT) is stored in the hepatocyte cytosol, preventing 

injury to cellular organelles. Such cadmium is not prone to induce apoptosis or necrosis, but 

can impair DNA repair (see below) [167]. The net result of Cd-MT storage is positive 

anyway, as poor MT expression was demonstrated to enhance cadmium carcinogenesis [168]. 

It is very interesting to note that MT expression is very highly variable in humans. 

Differences between individuals in a given population in hepatic MT expression are very 

large, up to a factor of 50 or 100 [169, 170]. Genetic variability in the promoter region of 

MT2A gene was recently discussed as a possible source of this effect [170]. 

Small portions of liver bound Cd-MT can be released back to circulation from 

damaged hepatocytes, upon prolonged exposure, resulting in the slow decrease of liver 

cadmium burden [77, 171]. The tight binding of Cd(II) ions to MT prevents their unspecific 

leakage, and there is little uptake of Cd-MT in most tissues. The epithelial cells of the S1 
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segment of kidney proximal tubules, however, absorb these complexes, which pass kidney 

glomeruli due to their low molecular weight of ca. 7 kDa. This scenario was considered to be 

responsible for cadmium nephropathy, and supported by nephrotoxicity observed in rats 

receiving transplants of cadmium-loaded livers [172]. Studies on MT-null mice and renal cell 

culture experiments demonstrated, however, that CdCl2 is much more toxic that Cd-MT in 

kidney cells [173-175]. The exact molecular mechanism of cadmium nephropathy remains, 

therefore, to be elucidated [165]. 

4.1.2. Cadmium carcinogenesis: oxidative stress and DNA repair inhibition. 

 As mentioned above, cadmium, in the form of Cd(II) compounds, is one of the most 

potent metallic carcinogens [74]. Several molecular mechanisms apparently coexist in 

cadmium carcinogenesis, including oxidative stress, inhibition of DNA repair and apoptosis, 

and alterations of gene expression. Also, some of these mechanisms are more important than 

others in specific cell types.  

Oxidative stress has been proposed to be a unifying theme, manifesting itself in other 

mechanistic trails listed [176]. It is a common feature of metal carcinogenesis [177]. 

However, unlike arsenic, nickel and chromium, the redox silent cadmium is unable to oxidize 

biomolecules or to catalyze the formation of reactive intermediates. Therefore, indirect 

mechanisms must be involved. Furthermore, cadmium is only weakly genotoxic, and typical 

results of direct oxidative damage to DNA, such as strand breaks or 8-oxo-dG formation were 

detected only at high micromolar levels of intracellular Cd(II) ions [178, 179]. Other 

mechanisms of cadmium carcinogenesis manifest themselves at much lower cadmium 

exposures, which makes them more relevant at realistic long term cadmium exposures in 

humans [180]. 
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Depletion of GSH and (partially interdependent) impairment of mitochondrial control 

of ROS production seem to be the most important indirect pathways of oxidative stress 

induction by cadmium. However, the induction of antioxidant MT [165, 166] and activation 

of GSH synthesis [179, 181] occur very early in response to cadmium exposure, and these 

effects need to be overcome for the oxidative stress to ensue. The interplay of these pro- and 

antioxidative processes appears to be relevant for apoptosis-related cadmium carcinogenesis.  

Apoptosis is a frequent result of cadmium exposure in cell cultures. Both caspase 

dependent and independent mechanisms were reported [182, 183], with oxidative stress as a 

likely common origin of the process [184]. This concept is supported by antiapoptotic effects 

of antioxidants in cadmium exposure [185]. On the other hand, cadmium has been frequently 

reported to inhibit apoptosis induced by other toxins, thereby serving as a co-carcinogen [186, 

187]. One way to explain this apparent contradiction was provided by the observation that 

cadmium exposure of RWPE-1 prostate cell cultures resulted in the selection of a subset of 

cells, which were apoptosis-resistant due to the elevation of MT content [188]. The prevention 

of apoptosis is considered to facilitate accumulation of DNA lesions in surviving cells, 

leading to malignant transformation [176]. What is very important, individual elements of 

these overall mechanisms may be enhanced or suppressed in response of various cell types to 

cadmium exposure. For example, testicular toxicity of cadmium in various strains of mice was 

reported to be independent of the relative MT contents [189].  

Low level (submicromolar) cadmium exposures result in alterations in gene expression 

patterns, which are clearly cell type-specific [176]. Oxidative stress and ROS production are 

implicated in many of these phenomena, including overexpression of proto-oncogenes, such 

as c-fos, c-jun, and others [190-192], and inhibition of expression of tumor suppressors, such 

as p53 [188]. More research is required to elucidate the cause-effect patterns involving these 

phenomena.  
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DNA repair inhibition emerges as a major molecular mechanism in cadmium 

carcinogenesis, explaining the apparent contradiction between weak mutagenicity and strong 

cocarcinogenicity of cadmium. There are four major DNA repair systems in mammalian cells: 

mismatch repair (MMR), nucleotide excision repair (NER), base excision repair (BER) and 

recombinational repair [193]. Cd(II) was reported to affect the first three [180, 194, 195]. The 

relevance of DNA repair inhibition in carcinogenesis due to a chronic exposure to cadmium is 

supported by very low, non-cytotoxic Cd(II) levels, at which DNA repair inhibition is 

observed. There is sufficient evidence to assume that Cd(II) ions interfere with repair systems 

on the level of individual proteins involved, rather than at a DNA lesion site.  

With respect to BER, Cd(II) inhibited repair of DNA oxidative damage products [196, 

197]. The mechanism of this activity includes inhibition of several BER proteins, such as 

OGG1, which repairs 8-oxoguanine lesions [198] or PARP, which orchestrates single strand 

break repair [199]. The action on OGG1 appears to be indirect, via Sp1 transcription factor, 

while that on PARP may be direct. Cd(II) ions inhibit the first step of the NER system, the 

incision of the DNA lesion. Therefore, the XPA protein, a NER repair complex initiator was 

proposed to be the prime cadmium toxicity target [200]. The MMR inhibition by Cd(II) also 

involves a direct interaction with the repair complex, resulting in the decrease of ATP 

consumption by MSH6 protein, observed in human cell cultures [201, 202].  

The above data for NER and BER are consistent with a concept of zinc fingers in 

DNA repair proteins as targets for carcinogenic Cd(II) ions, as many of the toxic effects 

described above could be reversed by an administration of Zn(II) ions. Chapter 4.3 presents 

molecular evidence for this idea in more detail. Zn(II) administration did not, however, 

reverse the inhibition of MHS6 exerted by Cd(II) ions, suggesting that the MMR pathway of 

cadmium toxicology involves oxygen, rather than sulfur binding sites.  
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4.1.3. Effects of Cd(II) on cellular junctions 

 While cadmium primarily damages kidney, the metal is also known to readily assault 

vascular endothelium [203]. The focal point of cadmium toxicity towards these two targets is 

the interaction of the Cd(II) ions with cell adhesion molecules, which form cell-cell or cell-

matrix junctions. In this respect, the most important junctions include adhering junctions and 

tight junctions (zonulae occludens) [204].  

Adhering junction is a complex of transmembrane proteins – cadherins, whose 

intracellular domains form links with catenin scaffolding proteins, which, in turn, are 

physically linked with cellular skeleton proteins. Cadherins are single-span transmembrane 

proteins, responsible for calcium-dependent cell-cell adhesion. They can transfer information 

intracellularly through α- and β-catenins and actin skeleton [205]. β-catenin has a double 

function, it is both a structural protein and a transcription factor. It participates in the Wnt 

signalling pathway (controlling embryogenesis and involved in human carcinogenesis) via 

TCF/LEF proteins [205, 206]. β-catenin trans-activates genes stimulating cell proliferation 

(like c-myc) and also genes protecting from apoptosis (e.g. Abcb1) [206] and therefore may be 

involved in the malignant transformation.  

Tight junctions comprise occludins, claudines, JAMs (junctional adhesion molecules) 

and ZO (zonula occludens proteins) proteins. They form a complex serving as a semi-

permeable barrier to the paracellular transport of ions, solutes, water, and cells (e.g. 

leukocytes). Tight junctions provide a barrier dividing the apical domains of plasma 

membranes from their basolateral parts [207].  

 It has been reported that in vascular and kidney epithelium cadmium disrupts the 

cadherin dependent cell-junctions. It is believed that Cd(II) binds at the Ca(II)  binding 

domain, thereby disorganising the whole adhering junction complex. The molecular details of 
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this instance of calcium/cadmium antagonism are not known. This action has a twofold effect: 

not only the cellular attachment loosens, but also the β-catenin molecule translocates to the 

nucleus where it exerts its gene-regulatory properties [204, 206]. In kidney, the disruption of 

cellular junctions takes place both in the proximal tubule and in vasculature [204]. It has been 

also reported that expression of the endothelium specific claudin-5 in tight junctions was 

irregular and diminished in the glomeruli and small blood vessels of the kidneys from Cd-

treated rats [204]. Therefore, Cd(II) clearly influences at least two types of cell-cell junctions. 

 Due to its junction disrupting properties, cadmium exerts a direct antiangiogenic effect 

on vascular epithelium by redistributing vascular E-cadherin (VE-cadherin) from cell-cell 

contacts and disabling the migration and tube formation of endothelial cells [208]. This fact 

leads to the suggestion that under certain conditions, cadmium may have an anticarcinogenic 

effect by preventing formation of blood vessels feeding the growing tumor [203, 208]. 

Cadmium toxicity to other organs may also be attributed to the cadmium capacity to 

disrupt cell-cell junctions in the vascular endothelium. For example, in lungs the earliest 

stages of Cd-induced pulmonary injury involve the disruption of the alveolar septum and the 

leakage of fluid and solutes into the alveoli. This observation is in accordance with the fact 

that cadmium, via disruption of cellular junctions, increases the endothelial permeability 

[203].  

4.2. Molecular Mechanisms of Nickel Toxicity 

The studies of molecular mechanisms in nickel toxicology are virtually limited to two 

major nickel-dependent pathologies: allergy and carcinogenesis. Current views on these 

mechanisms are presented in respective sections below. 

4.2.1. Molecular mechanisms in nickel allergy 
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Nickel allergy is a T-cell controlled disease [209]. The allergic reaction is a result of 

skin surface penetration by nickel, which results in the induction of cellular immune response. 

In this chapter we focus on those molecular events of nickel allergy that involve Ni(II) ions 

directly. Other important molecular aspects of immune system response to nickel exposure 

have been reviewed recently [210, 211].  

The allergenic potential of a nickel containing material depends on its ability to deliver 

Ni(II) ions. The oxidation of metallic nickel to Ni(II) occurs in human sweat with a sufficient 

rate to elicit allergic reaction, while NiO particles, which do not dissolve in sweat, are not 

allergenic [130, 131, 212]. The translocation of nickel through the outer layers of skin occurs 

in the form of Ni(II) ions, most likely bound to proteins. Human serum albumin (HSA) is 

considered as a likely main Ni(II) shuttle, due to its high abundance and mobility in skin 

[213]. This protein contains a specific Ni(II) binding site at its Asp-Ala-His- N-terminal 

sequence [214-216]. Recently, another skin protein, filaggrin (FLG), has been implicated in 

Ni(II) binding in the skin. This large protein is necessary for the process of skin cornification, 

which provides a barrier preventing epidermal water loss and penetration by infectious agents, 

toxins and allergens [217]. A decrease of expression or loss-of-function mutations in FLG 

gene are seen in a large proportion of atopic dermatitis individuals, including those suffering 

from nickel allergy. In addition to a general barrier function, FLG is considered to provide 

Ni(II)-specific defense by chelating Ni(II) ions [218, 219]. A role of recently discovered 

FLG2 in nickel allergy remains to be investigated [220].  

Upon skin penetration, Ni(II) ions induce hyperreactivity by activating Human 

Leucocyte Antigen (HLA)-restricted, nickel-specific T cells. There is evidence for two 

concurrent mechanisms of initiation of immune response by Ni(II) [221]. Some T cells can 

react to HLA-associated peptidic determinants which include bound Ni(II). This mechanism 

is similar to the standard presentation of organic haptens, except for the fact that Ni(II) ions 
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do not form strong, covalent bonds with presenting peptides. Instead, much more labile 

coordination bonds are formed. Another mechanism requires a permanent presence of surplus 

Ni(II) in the medium for activation, independent of peptides presented. These cells seem to be 

activated by Ni(II) complexation at TCR-MHC (T cell receptor-major histocompatibility 

complex) contact sites, which add strength to the TCR-MHC binding. HSA is a likely, but 

confirmed only in vitro, donor of Ni(II) to such complexes [213, 221]. Histidine residues in 

surface peptides have been implicated in Ni(II) binding in these more or less putative 

complexes [221-223]. 

Despite these developments, the chemical nature of Ni(II) interactions with T cells 

remains largely unknown. The allergic cross-reactivity between Ni(II) and Pd(II) has been 

noted [224, 225]. This fact suggests that active Ni(II) complexes are square-planar, rather than 

octahedral, because Pd(II) complexes are always square-planar [10]. Very recently, it was 

demonstrated that NiSO4 triggers monocyte activation in a way that includes changes of cell 

surface thiols [226]. A hypothetical Ni(II)-thiol complex would also be square-planar [227]. 

Furthermore, experiments in mice suggested that Ni(II) compounds can activate T cells, but 

are unable to prime the naïve ones. The latter effect could be obtained by using preformed 

Ni(III) or Ni(IV) peptide complexes or by co-administration of Ni(II) with H2O2 [228, 229]. 

All these pieces of evidence point at the involvement of redox active planar Ni(II) species in 

the mechanism of nickel allergy [177, 230].  

The ability of some metal ions to hydrolyze peptides was mentioned as potentially 

contributing to abnormal antigen processing, and thereby eliciting allergic response. However, 

no data were presented in support of this idea [231]. In this context, it is very interesting to 

note that Ni(II) ions are able to hydrolyze specific His-containing sequences, in vitro as well 

as intracellularly, yielding redox-active square-planar Ni(II) complexes [232-235]. Another 

interesting line of research stems from the epidemiological observation that a prolonged 
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childhood contact with nickel-releasing orthodontic braces prior to ear piercing decreases 

incidence of nickel allergy. Reversing this order of events, however, provides no protection 

[236, 237]. Once sensitized, a patient can develop skin symptoms upon oral challenge with 

Ni(II) compounds [238]. The dose-dependent development of oral tolerance to Ni(II) was 

confirmed recently in an animal study, which showed that only mice challenged with NiCl2 

orally had specific Ni(II) reactive regulatory T cells [239]. These data suggest the presence of 

specific chelation of Ni(II) somewhere in the digestive tract that results in a “safe” 

presentation of Ni(II) to the immune system. One can clearly state that despite significant 

progress, very much remains to be discovered with respect to molecular mechanisms in early 

stages of nickel allergy. Such knowledge is prerequisite for the development of nickel allergy 

medication.  

4.2.2 Molecular mechanisms in nickel carcinogenesis 

As presented above, nickel carcinogenicity depends on the water solubility of its 

compound. Insoluble, particulate Ni(II) compounds are stronger carcinogens than soluble 

compounds in both epidemiological and experimental animal studies. However, there is 

abundant evidence that soluble Ni(II) is the actual ultimate carcinogen for both types of 

compounds (for review, see [54, 133, 177, 240]). The difference in health hazards is primarily 

due to the resistance of insoluble compounds to clearance from the site of exposure in the 

body. For example, NiO yields nickel lung burdens with persistence up to 1000-fold higher 

than NiSO4 [241]. Furthermore particles of Ni(II) compounds of dimensions smaller than 5 

µm can cross the cell membrane by phagocytosis, delivering very high amounts of nickel in 

the vicinity of cell nucleus [242-244]. The toxicity of nickel delivered this way depends on 

the efficiency of mobilization of Ni(II) ions by dissolution in lysosomes [243, 245, 246]. A 

very recent study demonstrated higher toxicity of NiO nanoparticles, compared to both fine 

(micrometer size) NiO particles and soluble NiCl2 in cell lines [247]. This property can be 
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assigned to a combination of efficient particle delivery with fast intramolecular dissolution of 

small particles. By the way, this finding is the early sign of an emerging problem of 

nanoparticle toxicity.  

Another, much slower way of delivering Ni(II) intracellularly is through DMT-1, 

which exhibits a broad metal ion specificity, and participates in Cd(II) transport as well [36, 

248, 249]. This transport mode yields substantial amounts of cytosolic Ni(II), but particulate 

Ni(II) compounds, dissolved intracellularly were found to deliver a higher proportion of Ni(II) 

into the cell nucleus [243, 245]. A non-specific diffusion through the cell membrane was also 

proposed [250]. The latter mechanism, however, seems to be less likely in vivo, except for the 

digestive tract.  

Many molecular mechanisms were proposed for Ni(II) carcinogenesis, and the relative 

importance of these mechanisms is far from being understood. Ni(II) has been considered to 

be a source of reactive oxygen species (ROS) in the cell nucleus, with concomitant 

procarcinogenic DNA damage [177, 251]. Indeed, the pattern of DNA damage in cells 

exposed to Ni(II) resembles that of ionizing radiation, which suggests the involvement of 

Ni(II)-generated ROS [252]. Even more importantly, G->T transversions, mutations typical 

for oxidative damage, were found in both experimental renal tumors induced by Ni3S2, and in 

human lung cancers associated with nickel exposure [253, 254]. However, the mutagenicity of 

Ni(II) compounds is very low in many experimental systems, at odds with their high ability to 

induce neoplastic transformation [240, 255]. Several concepts were raised to overcome this 

apparent discrepancy. Cell line studies provided more or less stringent evidence for epigenetic 

mechanisms of nickel carcinogenesis. A unifying epigenetic concept has been proposed 

recently, which combines several hitherto separate molecular tracks [240]. Ni(II) exposure 

leads to alterations of acetylation, methylation and ubiquitylation of core histones, which may 

be associated with silencing of tumor suppressor and other cell cycle control genes [256-261]. 
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Ni(II) ions are also able to damage histone H2A directly, by hydrolytic truncation of the C-

terminal H2A octapeptide [234]. The presence of such truncated H2A in cultured cells 

resulted in an altered pattern of expression of cancer-related genes [262]. 

Ni(II) ions disturb intracellular redox control by depleting cellular stores of 

glutathione and ascorbate [263-267]. The latter event leads to the accumulation of Fe(III) in 

the cells. Finally, Ni(II)-exposed cells suffer from hypoxia, which is common to fast-growing 

tumors [268, 269]. The latter state facilitates selection of neoplastic phenotype that can escape 

apoptosis. This preconditioning may be combined with a weak, but present mutagenic ability 

of Ni(II) to complete carcinogenic transformation [240].  

An order of these events may also be different for specific carcinogens. For example, 

Ni3S2 dissolution is biphasic. The first, rapid phase is associated with high redox activity and 

may lead to the DNA damage, while the second, slow phase of Ni(II) release may elicit 

epigenetic damage [270].  

The above phenomena result from exposures of cells to high levels of intracellular 

Ni(II), most likely to be induced by phagocytosis of nickel sulfides or oxide. However, low, 

non-cytotoxic Ni(II) levels may also cause DNA damage and neoplastic transformation. At 

low concentrations, Ni(II) ions strongly enhance mutagenicity of other carcinogens, by 

inhibiting DNA repair [193]. Such synergy of Ni(II) with mutagenic carcinogens, including 

UV irradiation, N-methyl-N-nitrosourea and benzo[a]pyrene was demonstrated in cell line 

experiments [271-273]. Ni(II) was demonstrated to inhibit the XPA protein, which enables the 

formation of the NER complex [274]. This cocarcinogenic mechanism can also very well 

explain the discrepancy between the low mutagenicity and the high carcinogenicity of Ni(II) 

compounds.  

It seems that exposure to Ni(II) can induce many concurrent intracellular processes. 

Their relative relevance is likely do depend strongly on the type of tissue and cells affected. 
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This general notion was formulated previously in the context of various strains of mice [270]. 

It is also valid on the most elementary molecular level. For example, the ability of Ni(II) to 

deplete GSH depended strongly on the cell line type [263-266]. Also, the efficiency of the 

direct attack of Ni(II) on histone H2A was cell type-specific [234]. To elucidate these and 

other basic mechanisms of Ni(II) interactions inside the cell one needs to find out about 

molecular forms of its presence. Taking into account the intracellular abundance of potential 

low and high molecular weight ligands for Ni(II), which can be estimated as higher than 20 

mM, hypothetical free Ni2+ aqua ions may only exist temporarily at the moment of dissolution 

of a particle. Studies using molecular models, aided by species distribution calculations 

suggest that essential metabolites, ATP and histidine, as well as histones may bind the 

majority of Ni(II) ions in the cell nucleus [232, 233, 275-278]. These data indicate another 

direction of future research, linking basic metabolism of particular cell types with their 

susceptibility to Ni(II)-induced carcinogenesis. A clear protective effect of Mg(II) ions and 

other essential divalent metals against Ni3S2 carcinogenesis seems to fall into the same 

category [133, 279].  

4.3. Interactions with zinc fingers – a common target for cadmium and nickel. 

Zinc finger (ZF) domains are one of the most abundant families of protein motifs in 

the eukaryotic genome, comprising at least 3% of identified human proteins [280]. Their 

functions include the binding and recognition of nucleic acids and formation of multiprotein 

complexes [281, 282]. Typical ZF domains contain one or two Zn(II) ions bonded 

tetrahedrally in Cys2His2, Cys3His or Cys4 environments, and ZF proteins contain from one to 

more than 20 individual ZF units [283]. Zn(II) does not participate in interactions of ZF, but 

secures their structure, so that zinc release results in the loss of the ZF function [284]. ZF are 

targets for oxidizing agents, and cellular toxicity of reactive oxygen and nitrogen species is 

attributed in part to oxidation of zinc-binding thiol groups in ZF [284, 285]. ZF were also 
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proposed to be targeted by toxic metals, including Ni(II) and Cd(II). This issue is particularly 

interesting, because it provides a unifying mechanistic concept for carcinogenesis related to 

DNA repair inhibition [286]. Indeed, several DNA repair proteins, which are susceptible to 

inhibition by carcinogenic metals, contain zinc finger domains [194, 286]. ZF is a dual target 

for a toxic metal ion, because its function can be compromised by metal-metal substitution as 

well as by metal-catalyzed oxidation of zinc binding thiols. Ni(II) ions form weaker 

complexes with all kinds of ZF than Zn(II) ions [227, 287-289]. Nevertheless, they were 

demonstrated to substitute for Zn(II) in Cys4 and Cys2His2 ZF at a sufficient molar excess 

[227, 290]. This substitution results in an alteration of ZF structure, because of the non-

tetrahedral geometry of the binding site, imposed by the Ni(II) ion [227, 287, 288]. Moreover, 

Ni(II) ions were shown to facilitate disulfide bridge formation and zinc release from XPAzf, a 

ZF peptide derived from the XPA DNA repair protein [227]. The relative affinity of Cd(II) 

ions to ZF vs. Zn(II) ions increases with the number of Cys residues in the ZF binding site 

[291]. It is lower for Cys2His2 ZF [289-293]. On the other hand, Cys4 ZF preferentially bind 

Cd(II) ions [287, 294]. The binding in the latter ZF is nearly isostructural, as demonstrated for 

XPAzf [295, 296]. Oppositely to the Ni(II) finger, Cd(II)-substituted XPAzf was much more 

resistant to oxidation than the parent Zn(II) complex [294]. These facts suggest that the ZF-

based mechanisms of nickel and cadmium toxicity may be different. Ni(II) ions can assault 

ZF domains directly, or indirectly by eliciting oxidative damage. Cd(II) ions can impair 

physiological redox control of ZF activity, by protecting it when inhibition would be desired, 

e.g. in gene transcription regulation [284].  

The yet unsolved issue of the molecular mechanism of Cd(II) xenoestrogenicity is also 

related to ZF interactions. The estrogen-mimicking activity of Cd(II) ions, mentioned in 

Chapter 3.1.2, appears to be largely due to their direct interaction with the the α-subtype of 

estrogen receptor (ERα). Its DNA binding domain (DBD) and ligand binding domain (LBD) 
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are two potential binding sites for Cd(II). DBD is a dimeric ZF structure, and its apo-form 

was demonstrated to reconstitute in the presence of Cd(II) ions. The resulting complex 

retained DNA binding properties of the native domain [297]. However, a Zn(II)/Cd(II) 

competition was not studied. LBD contains four Cys residues which were not seen to form 

disulfide bonds in crystal structures [298]. The issue of Cd(II) binding to these cysteines 

remains however, to be elucidated [299-301]. Notably, the Zn(II) ions were found not to bind 

to LBD, but the Ni(II) ions were found to do so with a high affinity [299].  

5. SUMMARY 

Toxic properties of cadmium and nickel are usually discussed separately, due to their 

obvious differences in chemical properties (such as ionic radii), preferred geometries of 

complexes with bioligands, and redox properties. However, the awareness of health hazards 

related to exposure to their compounds appears to be generally low. Therefore, we chose to 

describe these two elements together, in one chapter. Nevertheless, as described above, 

cadmium and nickel share some toxicologically relevant features. They are increasingly 

present in the human environment due to their joint technological usage, such as Ni-Cd 

batteries. They are co-emitted in fly ash generated in coal power plants and municipal waste 

incinerators and are simultaneously present in the tobacco smoke. As a result, they share the 

respiratory route of human exposure. The main difference between exposures to cadmium and 

nickel is due to the different levels at which toxic effects are induced. The lower presence of 

cadmium in the Earth crust corresponds to its higher toxicity, compared to nickel.  

Further similarities between cadmium and nickel can be noticed in their fate in the 

human body. Both Cd(II) and Ni(II) ions are taken up in the digestive tract via divalent metal 

transporter (DMT-1), distributed in the blood by albumin and finally delivered to liver. A 

crucial difference in toxic properties between Cd(II) and Ni(II) ions results from the ability of 
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Cd(II) (and inability of Ni(II)) to induce metallothionein synthesis in hepatocytes. This 

difference is probably due to the distinct geometric requirements of thiolate complexes: Cd(II) 

eagerly forms a tetrahedral structure, while Ni(II) strongly prefers a square-planar geometry 

of the complex. The long term accumulation of cadmium within the human body and 

cadmium nephrotoxicity appear to be the distant consequence of this difference in its 

geometric requirements. In contrast, some data, reviewed above, seem to indicate that the 

preference of Ni(II) to form planar complexes containing sulfur atoms may be partially 

responsible for the nickel allergy. Despite these differences, both Cd(II) and Ni(II) were 

shown to deplete intracellular glutathione and elicit oxidative stress, which is likely relevant 

in their carcinogenesis. 

DNA repair inhibition is a yet another common area of cadmium and nickel toxicity. 

Subcellular and molecular studies indicate that both these metals may actually target the same 

zinc finger (ZF) domains in repair complex components. However, specific mechanisms of 

this interference differ on the molecular level, as Ni(II) destroys ZF structures, while Cd(II) 

appears to stabilize them, in comparison to the native Zn(II) ion.  

 The above presented data provide a reason for research on the effects of joint 

exposures to Cd(II) and Ni(II). The combination of analogies and discrepancies of their 

molecular properties, discussed briefly above, makes them potentially synergic toxins, 

properties of which need to be investigated in order to provide a better protection for humans 

exposed.  
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