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       Review   

   Matthias   Bochtler     *  

  Structural basis of the TAL effector–DNA 
interaction  
     Abstract :  Phytopathogen transcription activator-like 

effectors (TALEs) bind DNA in a sequence specific 

manner in order to manipulate host transcription. TALE 

specificity correlates with repeat variable diresidues 

in otherwise highly stereotypical 34 – 35mer repeats. 

Recently, the crystal structures of two TALE DNA-binding 

domains have illustrated the molecular basis of the TALE 

cipher. The structures show that the TALE repeats form 

a right-handed superhelix that is wound around largely 

undistorted B-DNA to match its helical parameters. Sur-

prisingly, repeat variable residue 1 is not in contact with 

the bases. Instead, it is involved in hydrogen bonding 

interactions that stabilize the overall structure of the 

protein. Repeat variable residue 2 contacts the top strand 

base and forms sequence-specific hydrogen bonds 

and/or van der Waals contacts. Very unexpectedly, 

bottom strand bases are exposed to solvent and do not 

make any direct contacts with the protein. This review 

contains a summary of TALE biology and applications 

and a detailed description of the recent breakthroughs 

that have provided insights into the molecular basis of 

the TALE code.  
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Introduction:  virulence and 
avirulence in phytopathogen–host 
interactions 
   Xanthomonas ,  Pseudomonas  and  Ralstonia  pathogens 

are locked in an evolutionary arms race with their hosts 

(Jones and Dangl , 2006 ). The bacteria produce virulence 

factors, termed effectors, to manipulate the host to their 

advantage, for example in order to facilitate coloniza-

tion and spreading or to combat resistance (Gohre and 

Robatzek , 2008 ). From the perspective of the host, bacte-

rial virulence factors signal infection. Hosts have there-

fore evolved mechanisms to recognize such factors (Van 

den Ackerveken and Bonas , 1997 ; Dangl and Jones , 2001 ; 

Jones and Dangl , 2006 ), often with the help of a single 

resistance ( R ) gene (Keen , 1990 ). A gene that normally 

promotes infection in susceptible plants becomes an avir-

ulence ( avr ) gene for resistant plants (Van den Ackerveken 

and Bonas , 1997 ) and is named accordingly (Vivian and 

Mansfield , 1993 ). For example,  avrBs3  designates the 

bacterial gene that renders  Xanthomonas  avirulent in the 

presence of the plant  Bs3  gene (Bonas et al. , 1989 ). 

  Transcription activator-like effector 
virulence/avirulence factors 
 Transcription activator-like effectors (TALEs) belong to 

the virulence/avirulence proteins and have been reviewed 

in detail (Boch and Bonas , 2010 ; Bogdanove et al. , 2010 ; 

Scholze and Boch , 2011 ). They are made by bacteria, but 

injected into the plant cytoplasm and then translocated 

to the nucleus (Szurek et al. , 2002 ). With hindsight, it is 

now clear that TALE proteins are not only  ‘ transcription 

activator-like ’ , but actually control transcription in both 

susceptible (Kay et al. , 2007 ) and resistant plants (Romer 

et al. , 2007 ; Romer et al. , 2009b ). The architecture of TALE 

proteins reflects their function (Bogdanove et al. , 2010 ). 

Near the amino terminus, there is a type III secretion 

signal that directs the transfer of the protein from the phy-

topathogen producer into the plant cytoplasm. Next, there 

is a set of 34 – 35mer repeats that differ almost exclusively 

in two adjacent positions (residues 12 and 13 in conven-

tional numbering, known as the repeat variable diresidue 

or RVD). Despite their stereotypical nature, the repeats 

mediate tight and sequence-specific DNA binding (Kay 

et al. , 2007 ). In the C-terminal region, TALE proteins have 
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1056   M. Bochtler: Structural basis of the TAL effector–DNA interaction

one or several nuclear localization signals for transfer to 

the nucleus and an activation domain for interaction with 

the host transcription machinery (Figure  1  ).  

  The TALE cipher correlates repeat 
variable diresidue amino acid and 
target DNA sequence 
 The correlation between the TALE repeat amino acid 

sequence and specifically recognized DNA has been 

investigated using at least three different assays. Early 

experiments were done using a system closely mimick-

ing physiological conditions.  Xanthomonas  was used 

to express TALEs and to secrete them into plant cells. 

In these assays, the TALE concentration was relatively 

low. Higher concentrations of TALEs were achieved in 

so called  ‘ agroassays ’ . In these experiments,  Agrobac-
terium  was used to deliver 35S promoter driven T-DNA 

coding for a TALE together with the promoter reporter 

construct. Finally, some TALE specificity data have been 

obtained  in vitro  using the systematic evolution of ligands 

by exponential enrichment (Miller et al. , 2011 ). The data 

that were obtained by the three different approaches are 

mostly, but not completely, consistent. In essence, they 

show that there is a strikingly simple correlation between 

TALE protein and target DNA sequences (Figure  2  ; Boch et 

al. , 2009 ; Moscou and Bogdanove , 2009 ). This clear-cut 

 ‘ cipher ’  correlates RVDs with single DNA bases (in the  ‘ top ’  

DNA strand): HD pairs with Cyt, NG with Thy, NI with Ade 

and NN with Gua or Ade (single letter code for amino acids 

and three-letter code for bases; Boch et al. , 2009 ; Moscou 

and Bogdanove , 2009 ). Recent studies have extended the 

code and shown that the NK diresidue binds Gua (Morb-

itzer et al. , 2010 ; Miller et al. , 2011 ). HG is ambiguous and 

can select either Cyt or Thy. The naturally frequent NS 

 Figure 2    TALE cipher in frequency representation. 

 The repeat variable diresidues (RVDs) and DNA bases are given in 

single letter code. Amino acids: A-alanine, D-aspartic acid/aspar-

tate, G-glycin, H-histidine, I-isoleucine, K-lysine, N-asparagine, 

S-serine. Bases: A-adenine, C-cytosine, G-guanine, T-thymine. Top: 

The data from Moscou and Bogdanove  (2009)  are shown in the 

original representation. Bottom: The data from Boch and coworkers 

(2009) have been reordered and are redisplayed to reflect frequen-

cies. The number of cases for each RVD is indicated below the logo. 

The star corresponds to the missing RVR residue (by convention 

taken to be RVR2). Frequencies on the right, which are based on 

very few instances, are likely to change as more data become 

available. Some RVDs were not analyzed by Boch and coworkers.    

 Figure 1    TALE architecture. 

 (A) Domain organization of a typical TAL effector protein. TIIIS stands for type III secretion signal, NLS for nuclear localization signal, and AD 

for activation domain. The black triangles represent canonical TALE repeats. The complete grey triangles represent two degenerate repeats 

that cooperate to pair with a 5 ′ -Thy. The truncated grey triangle stands for a half-repeat at the end of the repeat domain. (B) Amino acid 

sequence of a (typical) single repeat. The amino acids in positions 12 and 13, which form the repeat variable diresidue (RVD), are high-

lighted by bold print.    

favors Ade or Cyt, but can also pair with the other bases 

(Boch et al. , 2009 ; Moscou and Bogdanove , 2009 ). Ten or 

more repeats (plus an obligatory flanking half-repeat) are 

required for efficient transcription activation (Boch et al. , 

2009 ). Specifically recognized DNA sequences start with 

Thy (Boch et al. , 2009 ). The subsequent order of DNA 

bases in the top DNA strand (in 5 ′  – 3 ′  direction) is dictated 

by the order of RVDs (from N to C-terminus, Figure 2; Boch 

et al. , 2009 ; Moscou and Bogdanove , 2009 ). 

  Applications of TALE proteins 

 The simplicity of the TALE cipher makes it possible to 

design artificial proteins that specifically bind a predeter-

mined DNA sequence (Boch et al. , 2009 ; Morbitzer et al. , 

2010 ; Miller et al. , 2011 ; Zhang et al. , 2011 ). Together with 
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methods for efficient TALE assembly (Cermak et al. , 2011 ; 

Geissler et al. , 2011 ; Li et al. , 2011 , 2012; Morbitzer et al. , 

2011 ; Weber et al. , 2011 ; Zhang et al. , 2011 ; Reyon et al. , 

2012 ; Sanjana et al. , 2012 ), this has prompted the use of 

TALE proteins for various applications (Bogdanove and 

Voytas , 2011 ). 

 TALEs can be applied to transcription control as 

demonstrated in plants (Boch et al. , 2009 ; Romer et al. , 

2009a,b ,  2010 ; Morbitzer et al. , 2010 ; Mahfouz et al. , 2011 ; 

Weber et al. , 2011 ; Li et al. , 2012 ) and in mammalian cell 

cultures (Geissler et al. , 2011 ; Miller et al. , 2011 ; Zhang 

et al. , 2011 ; Bultmann et al. , 2012 ). For engineered tran-

scriptional control, TALE binding sites should be chosen 

in a way that will minimize off-target effects. A tool for the 

selection of such  ‘ orthogonal ’  target sequences has just 

been published (Garg et al. , 2012 ). 

 TALEs can also be adapted to genomic editing by 

fusing their sequence-selective regions to unspecific FokI 

nuclease domains to create TALE nucleases (TALENs; 

Christian et al. , 2010 ; Li et al. , 2011 ; Miller et al. , 2011 ). 

As FokI is only active as a dimer (Bitinaite et al. , 1998 ), 

two fusion proteins are required that bind in a head-to-

head manner to adjacent DNA regions. TALENs have been 

shown to initiate homologous recombination in yeast (Li 

et al. , 2011 ) and to work in the genome editing of cul-

tured cells from different vertebrates, including humans 

(Hockemeyer et al. , 2011 ; Miller et al. , 2011 ; Sander et al. , 

2011 ; Tong et al. , 2012 ). Whole animal transgenesis with 

TALENs is attractive because it is applicable to species 

without established embryonic stem cells. The tech-

nique has already been demonstrated for both inverte-

brates (Wood et al. , 2011 ; Liu et al. , 2012 ) and vertebrates 

(Huang et al. , 2011 ; Tesson et al. , 2011 ). The list of trac-

table species is likely to grow quickly because it is now 

much easier to obtain the necessary TALENs. Computa-

tional tools are available to aid the selection of target sites 

and the construction of TALENs using different assembly 

protocols (Doyle et al. , 2012 ). Moreover, custom-made 

TALENs can now be obtained from commercial sources 

(de Francesco , 2011 ). It is still too early to tell how TALENs 

will compare with zinc finger nucleases (ZFNs) in terms of 

efficiency and toxicity, but they certainly look promising 

(de Francesco , 2011 ; Mussolino et al. , 2011 ).   

  Towards a structural interpretation 
of the TALE cipher 
 The first hints about the structure of TALE repeats were 

based on the observation that TALE and tetratricopeptide 

repeat (TPR) sequences were distantly similar. Strictly 

speaking, the term  ‘ TPR ’  describes only the repeat length 

(34 amino acids). However, from the beginning it was 

coined with reference to a particular set of homologous 

proteins (Hirano et al. , 1990 ; Sikorski et al. , 1990 ). The 

family of TPR proteins has since grown dramatically. They 

all share the same key structural features. A TPR repeat 

consists of two  α -helices with a short linker in between 

(Blatch and Lassle , 1999 ;  D ’ Andrea and Regan, 2003 ). 

Repeats usually assemble into right-handed superheli-

cal structures (Main et al. , 2003 ). Most TPR proteins are 

thought to be involved in protein–protein interactions or 

in the assembly of multi-subunit complexes (Blatch and 

Lassle , 1999 ). Based on the (distant) similarities between 

the TALE and TPR amino acid sequences, it was suggested 

that TALE repeats adopt a TPR-like fold and assemble into 

a right-handed superhelix (Schornack et al. , 2006 ). 

 The first experimental analysis of TALE structure was 

the nuclear magnetic resonance (NMR) structure of one 

and a half repeats of the TALE protein PthA2 in the absence 

of DNA (Murakami et al., 2010). The data showed that the 

analyzed TALE repeat adopted a TPR-like structure. The 

additional half-repeat was used to derive the relative ori-

entation of repeats to each other. Interestingly, extension 

of the structure  ‘  in   silico  ’  led to a TALE superhelix with a 

pore wide enough to accommodate DNA on the inside. The 

dimensions of this TALE superhelix were consistent with 

small-angle X-ray scattering data for a larger PthA2 frag-

ment. However, the axial spacing of the modeled TALE 

superhelix ( ≈ 6.8  Å ) was twice the size of the axial spacing 

between bases in B-DNA ( ≈ 3.4  Å ). This finding implied that 

the TALE repeats had to adopt a more compact structure in 

order to bind to DNA. Experimentally, dynamic light scat-

tering experiments showed that the hydrodynamic radius 

of the PthA2 repeat domain decreased significantly upon 

the addition of a DNA duplex representing part of the 

PthA2-induced promoter (Murakami et al. , 2010 ). Based 

on these data, a detailed model with DNA on the inside 

and TALE repeats in a superhelical arrangement adjusted 

to match the axial and angular spacings between base 

pairs was proposed (Scholze and Boch , 2011 ). Even this 

model, however, was not sufficiently detailed to explain 

the TALE cipher in terms of molecular interactions.  

  Crystal structures of TALE repeat 
domains 
 The detailed structure of TALE repeats and their inter-

actions with DNA was clarified in macromolecular 
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crystallographic studies. A series of independent struc-

tures, obtained by two different groups (Deng et al. , 2012 ; 

Mak et al. , 2012 ), has recently provided key insights. The 

results of the two studies are consistent with each other, 

but also very complementary. Deng et al. have analyzed 

dHax3 (Deng et al. , 2012 ), a variant designed based on 

Hax3 from  Xanthomonas campestris  pv . armoraciae  

(Mahfouz et al. , 2011 ). Mak et al. have focused on the natu-

rally occurring TALE protein, PthXo1, from the rice patho-

gen  Xanthomonas oryzae  (Mak et al. , 2012 ). Deng and col-

leagues managed to crystallize the DNA-binding domain of 

dHax3 in the presence and absence of its target, so they 

can provide insights into the rearrangements necessary for 

complex formation. The main limitation of their study is 

that dHax3 is relatively short (11.5 repeats) and contains 

only a limited diversity of RVDs (HD, NG and NS). Mak and 

colleagues did not determine the apo-structure, but their 

DNA-binding domain is much longer (23.5 repeats) and 

contains a more diverse set of RVDs (HD, NG, HG, NI, NN 

and N*; unfortunately the single NS repeat is disordered 

in the crystal). Together, the new structures almost com-

pletely explain the TALE cipher (with the exception of the 

NK – Gua interaction). At the same time as the experimen-

tal papers, a prediction of the TALE – DNA interactions was 

published (Bradley , 2012 ). The model is strikingly accu-

rate, but nevertheless superseded by the crystal structures. 

Hence, the following sections will be focused exclusively 

on the experimental data.  

  Apo-structure of the complete TALE 
DNA-binding domain 
 The dHax3 structure in the absence of DNA confirms 

key features of the PthA2 NMR model, but also differs in 

important respects. First, Deng et al. report that the angle 

between the first and second helices of the repeat is differ-

ent from the angle determined by NMR. This discrepancy 

might result from the amino acid differences between 

PthA2 and dHax3. However, it could be also due to the 

drastic PthA2 truncation that was necessary to obtain the 

structure, or reflect the difficulty in accurately determin-

ing the relative position of secondary structure elements 

by NMR. Independent of the detailed explanation, Deng 

et al. suggest that TALE repeats should not be classified as 

TPR-like, due to the different angles between the helices 

within one repeat. Second, the NMR and crystallographic 

data assign different conformations to the RVD. Accord-

ing to the former, the RVD main chain adopts a helical 

conformation. As a result, the RVR1 and RVR2 side chains 

are oriented roughly parallel to each other, so that both 

could interact with the DNA bases of a Watson-Crick 

pair. In contrast to the NMR results, the crystallographic 

data place the RVD in the loop between repeat helices. 

With this arrangement, the RVR1 and RVR2 side chains 

point in opposite directions, so that at most one of them 

can interact with a specifically recognized Watson-Crick 

pair. Third, the crystal structure shows a clear kink in the 

second helix of the repeat, which was not reported for 

the NMR model. Fourth, the consecutive repeats of the 

dHax3 superhelix are separated by an axial distance of 5.4 

 Å , which is smaller than for PthA2, but still much larger 

than the 3.4  Å  van der Waals distance between base pairs 

in B-DNA.  

  Gross structure of the TALE – DNA 
complexes 
 The crystal structures of the two TALE DNA-binding 

domains with their targets show the flexibility of the 

repeat arrangement. As predicted, the TALE superhelix 

adapts to match the helical parameters of the DNA (Figure 

 3  ; Scholze and Boch , 2011 ). In the case of dHax3, a direct 

comparison between the TALE conformations in the pres-

ence and absence of DNA is possible. The superposition 

shows that the repeat structure is almost identical for 

N
B

A

C

Top strand

Bottom strand

 Figure 3    PthXo1 – DNA interaction (top view). 

 (A) Fifteen repeats and DNA are shown. The repeats are presented 

as green ribbons and the DNA is in space filling representation. The 

first repeat is in dark green with repeat variable diresidue amino 

acids in orange in space filling representation. (B) Detail from (A), 

showing only the C α  trace of the first repeat, the repeat variable 

di residue and its interacting base pair. Hydrogen bonds are indi-

cated by dotted green lines. Circles with a dot/cross inside indicate 

the polarity of the DNA backbone (in 5 ′  – 3 ′  direction) towards the 

viewer and into the page, respectively.    
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residues 1 to approximately 22, and that subtle changes 

of the further 12 amino acids accumulate and lead to the 

overall more compact arrangement in complex with DNA. 

In contrast to the protein, the DNA does not change con-

formation in a major way upon complex formation and is 

close to perfect B-DNA in both crystal structures (except 

for very slight overwinding with 11 base pairs per turn). As 

expected, RVDs come close to the specifically recognized 

bases. To a first approximation, the first and second helices 

of each repeat point towards and away from the DNA in 

a radial direction, respectively. A more accurate descrip-

tion takes into account the axial components of helix ori-

entation antiparallel and parallel to the top DNA strand 

for the first and second helices, respectively (if  ‘ direction ’  

is defined as 5 ′  – 3 ′  for DNA and N to C for protein; Figure 

 4  ). In the view along the DNA, the packing arrangements 

are clearly visible. Looking down the top DNA strand, the 

second helix of a repeat is placed approximately  ‘ on top ’  of 

the first helix of the next one (Figure 3). 

  DNA readout from the major groove side 

 The crystal structures show that TALE repeats exclu-

sively make contacts with the DNA on the major groove 

side (Figure 3B). This does not come as a surprise. Com-

pared to the minor groove, it is much wider and more 

accessible. Moreover, hydrogen bonding interactions and 

shape selection on the major groove side are sufficient to 

distinguish all four bases. In the minor groove Ade:Thy 

and Thy:Ade pairs  ‘ look alike ’ , and the same applies for 

Cyt:Gua and Gua:Cyt pairs. Minor groove binding pro-

teins therefore only tend to distinguish W (Ade or Thy) 

from S (Gua or Cyt), but not individual bases. There is no 

evidence in the TALE cipher for this type of degenerate 

sequence recognition (Figure 2), in agreement with the 

structural data.  

  No contacts between RVR1 and the DNA bases 

 Repeat variability is essentially limited to the RVDs, sug-

gesting that both residues are involved in direct hydrogen 

bonding and van der Waals interactions with the DNA 

bases. On the other hand, RVR1 makes little contribution 

to specificity. Asparagine in the first position is compat-

ible with all four bases, and histidine at least with the 

pyrimidines. A natural explanation of this promiscuity of 

RVR1 could be that N and H can act both as hydrogen bond 

donors and acceptors and can therefore interact with all 

four bases. Surprisingly, this explanation is wrong. Both 

PthXo1 and dHax3 crystal structures show that RVR1 does 

not make any direct contacts with the bases. Instead, 

it points away from the DNA and is involved in inter-

protein interactions that stabilize the repeat conforma-

tion. According to the dHax3 structure, the RVR1 donates 

a hydrogen bond to the carbonyl oxygen atom of Ala8 of 

the same repeat. A more complex picture emerges from 

the structure of PthXo1, which contains several instances 

of the IG RVD. As the I side chain does not contain polar 

groups, the intra-repeat hydrogen bond with Ala8 cannot 

be established. Moreover, in the PthXo1 structure the inter-

actions of RVR1 are less stereotypical, even if this residue 

is suitable as a hydrogen bond donor. In some cases it 

even appears to interact with a downstream repeat rather 

than with an adjacent residue.  

  Contacts of RVR2 with the top strand DNA base 

 According to the PthXo1 and dHax3 crystal structures, 

TALE repeat sequence selectivity is mediated by the 

contact of RVR2 with the top strand base of target DNA. 

Together, the PthXo1 and dHax3 crystal structures 

provide illustrations for most of the RVR2 interactions 

with cognate bases in the TALE cipher. Inevitably, crystal 

structures can only show favorable contacts that promote 

binding. Unfavorable interactions that discourage or 

preclude the binding of other DNA bases are difficult 

to observe. Nevertheless, they contribute to selectivity 

at least as much as the favorable ones (due to the high 

penalty for van der Waals clashes, anti-selection can be 

more rigorous than selection). Therefore, predicted unfa-

vorable interactions are also described here (Figure  5  ). 

In the following, RVR2 residues are ordered according to 

their mode of base selectivity. I and G are described first, 

 Figure 4    PthXo1 – DNA interaction (side view). 

 Schematic representation of TALE repeats 1 and 11 bound to a 

15-mer DNA. The arrows indicate polypeptide chain direction.    
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because their specificity is largely determined by shape 

complementarity (van der Waals interactions). Next, the 

polar residues D, N and S are discussed. For their inter-

actions with DNA bases, shapes and hydrogen bonds 

are important. K is discussed last, because its interac-

tions with DNA bases have not yet been documented by a 

crystal structure. 

 Isoleucine has a fairly bulky side chain that reaches 

into the outermost major groove region (in the docu-

mented interactions with Ade and Cyt). In this region, 

purine bases occupy the least space, Cyt somewhat more 

space and Thy is the most bulky. On this basis, we might 

expect that I would select for Ade and Gua, and to a lesser 

extent Cyt. However, there is a complication. In order to fit, 

the purine bases must lose a water molecule bound to the 

N7 atom. This loss has an entropic benefit, but an enthal-

pic cost. Taking the desolvation cost into account, binding 

of Cyt could be more favorable than binding of Ade and 

Gua. Experimentally, I is found to preferentially interact 

with Ade and to a lesser extent with Cyt, but barely with 

Gua. The reasons for this order of preferences are not yet 

fully understood, but at least the discrimination against 

 Figure 5    Structural basis of the TALE cipher. 

 All atom representation of RVR2 residues and interacting bases, colored according to atom type. Dotted green lines indicate hydrogen 

bonds. Interactions that have already been documented crystallographically are presented on a light green background. All others (which 

have only been modeled) are presented on a white background. Clashes are indicated by brown lightning symbols.    
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Thy is perfectly consistent with the structural data (Figure 

5, row 1). 

 Glycine has no side chain. Interactions between G (in 

the HG and NG RVDs) and Thy and Cyt are documented 

in the crystal structures. In most but not all cases, the 

5-methyl group of Thy (the carbon atom is labeled C5A in 

Figure 5) is in van der Waals contact with the glycine main 

chain. Cyt, which lacks the 5-methyl group, cannot make 

such a contact, which is confirmed by the crystal struc-

ture. Similarly, the glycine is too far away from the Hoogs-

teen edge of the purine bases to make direct van der Waals 

contacts (in the absence of structural changes to accom-

modate these bases). Thus, the strong preference of NG 

and HG for Thy that has been observed experimentally is 

clearly explained, but a mild bias towards some (Cyt, Ade) 

and against other (Gua) bases is not directly obvious from 

the structural data (Figure 5, row 2). 

 Aspartate acts as a hydrogen bond acceptor (at 

neutral pH) and therefore selects for the bases that have 

hydrogen bond donor atoms in the major groove. Its inter-

action with Cyt is documented in the PthXo1 and dHax3 

crystal structures and shows the expected hydrogen bond 

from the N4 atom of Cyt to the O δ  atom of D. The much less 

frequent interaction with Ade is not yet structurally docu-

mented, but it can be predicted that D accepts a hydrogen 

bond from the Ade N6 atom. The Ade N6 is located more 

centrally in the major groove than the Cyt N4. Therefore 

the hydrogen bond with D is expected to be longer and 

weaker. D excludes binding of Thy, because its C β  atom 

(and at least for some conformations also its C γ  and O δ  

atoms) would clash with the 5-methyl group of Thy. Thus, 

the structural data are perfectly consistent with the exper-

imental observation that D selects for Cyt and (rarely) for 

Ade (Figure 5, row 3). 

 Asparagine is isosteric to D (except for hydrogen 

atoms), but it can act as a hydrogen bond donor or accep-

tor. In the PthXo1 structure, its interaction with Gua has 

been observed twice and shows a hydrogen bond from the 

N carboxamide to the N7 atom of Gua. In both instances, 

the complementary base (Cyt) is found to be significantly 

out of the plane of the recognized Gua. Whether this is 

a general feature of this pairing remains to be clarified 

when more instances are crystallographically character-

ized. A hydrogen bond from the N side chain carboxamide 

to the N7 atom is also expected when N pairs with Ade. In 

contrast, a flip of the N side chain (which interchanges the 

O δ  and N δ  atoms) is required for pairing with Cyt. As for 

aspartate, steric clashes prevent pairing of N with Thy. The 

very rarely observed pairing of N with Thy can be attrib-

uted to a rearrangement of the main chain conformation 

(Figure 5, row 4). 

 Serine has a shorter side chain than the other RVR2 

amino acids (except for glycine) and can act as a hydrogen 

bond donor or acceptor. So far, only the pairing of S with 

Ade has been crystallographically observed. S donates a 

hydrogen bond to the N7 atom of the purine base. Although 

not yet observed, the same pattern is likely to occur for 

the interaction of S with Gua. As for other amino acids 

with side chains, S should exclude Thy by steric clashes. 

Rare pairings of S with Thy probably involve avoidance of 

these clashes, presumably via rearrangements in the main 

chain of the protein to reposition the S side chain (Figure 

5, row 5). 

 Lys is not found very frequently in natural TALE pro-

teins, but the NK RVD has been shown to preferentially 

pair with Gua. In structural terms, K has a very long side 

chain and a terminal amino group that should be proto-

nated at neutral pH and therefore is only suitable as a 

hydrogen bond donor. The exocyclic O6 atom of Gua is a 

hydrogen bond acceptor that is further away from the RVR2 

main chain than the N7 atom. Although the side chain of 

K can adopt very twisted conformations that bring the 

amino group closer to the main chain, the most common 

rotamers are extended. It is therefore more likely that the 

K amino group donates a hydrogen bond to the Gua O6 

atom. This interaction does not work for adenine and can 

therefore explain why NK, in contrast to NN, prefers Gua 

over Ade (interaction not shown). 

 In addition to the canonical RVDs that consist of two 

amino acids, some TALE repeats have a single RVR. The 

N* (the * denotes the  ‘ missing ’  amino acid) prefers the 

pyrimidines, but is not very selective and can also accept 

purine bases. There are two examples of this repeat in the 

PthXo1 structure. Like NG, N* does not have an amino acid 

side chain and therefore has space to accommodate Thy. 

The preference of pyrimidines over purines is not obvious 

from the crystal structure, since the truncated loop is 

found at considerable distance from the top strand base 

(interaction not shown).  

  Recognition of the 5 ′ -Thy 

 The base at the 5 ′ -end of a sequence that is selectively 

bound by a series of TALE repeats is a Thy. This was 

re cognized at the time of the discovery of the TALE cipher 

and speculatively attributed to interactions with the 0 th  

repeat. The PthXo1 structure qualitatively supports this 

concept. A 0 th  repeat is present, but upstream there is 

yet another cryptic repeat (termed the -1 st  repeat), which 

is only apparent in the structure, but was not recognized 

at the level of the amino acid sequence. Surprisingly, the 
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selection of Thy is mediated by the -1 st  (rather than the 

0 th ) repeat, via a favorable interaction with the indole 

ring of a tryptophan residue (Figure  6  ). In the dHax3 struc-

ture, there is a tryptophan residue at (approximately) the 

same place in the amino acid sequence, but this residue 

does not come close to the 5 ′ -Thy. The lack of an interac-

tion could be due to the choice of the N-terminal boundary 

of the dHax construct (there is only one residue upstream 

of the tryptophan).  

  Influence of methylation on the TALE code 

 In higher plants, cytosine is frequently modified to 

5-methylcytosine, both in the CpG and CpNpG context 

as well as in a sequence-independent manner (Jeltsch , 

2010 ). It is therefore worth considering the effects of 

5-methylation of cytosines on the TALE code. According 

to the TALE cipher, Cyt pairs preferentially with HD, HG 

and N*. In the case of HD, the structural data predict a 

clash between the 5-methyl group and the side chain of 

D. Hence, 5-methylation should work against this pairing. 

Despite this, the TALE cipher also shows that the steric 

clash does not absolutely exclude the 5-methyl group 

of Thy. The discrimination against 5-methylcytosine is 

therefore not expected to be perfect. The TALE cipher 

shows that HG and N* can accept Thy, and should thus 

have space for a pyrimidine 5-methyl group, which is con-

sistent with the results of molecular modeling. HG and N* 

should therefore bind Cyt regardless of methylation. The 

absence of drastic effects of 5-methylation of cytosines 

might also explain why this aspect of the TALE code 

has received very little attention so far. For applications 

of TALE in biotechnology, the effects of other types of 

DNA methylation (cytosine N4 and adenine N6, found 

in bacteria and some lower eukaryotes; Pace , 1997 ) are 

also of interest. Molecular modeling suggests that these 

modifications should be much more disruptive for the 

TALE code. Nevertheless, there are no experimental data 

to confirm the prediction, perhaps because TALEs have 

mostly been used in cells of plants and higher animals. 

Clearly, more experimental work is necessary on this 

neglected aspect of TALE biology.  

  Correlations between RVR1 and RVR2 

 If RVR1 and RVR2 fulfill their roles completely indepen-

dently of each other, it should be possible to arbitrarily 

combine them. In other words, the frequent HD and NI 

should have ND and HI counterparts. This appears to be 

the case, but both ND and HI are rare RVDs. ND appears 

to be at least roughly synonymous to HD. In the case of 

HI, the statistics are too poor to draw any conclusions 

(Figure 2). Correlations between RVR1 and RVR2 make 

sense if RVR1 identity affects the position and conforma-

tion of RVR2. For example, the RVR2 residues N and S must 

reach deeper into the major groove to reach the N7 atom 

of purines, than the RVR2 residue D to probe for hydrogen 

bonding interactions with the N4 atom of Cyt. N and S 

follow RVR1 residue N, whereas D follows RVR1 residue 

H according to the TALE cipher. Thus, we could speculate 

that RVR1 residues N and H promote  ‘ in and  ‘ out ’  con-

formations of the RVR2, respectively. Unfortunately, the 

structural data suggest a more complex picture. Super-

positions show that there is no clear-cut clustering of 

RVR2 C α -positions depending on the identity of the RVR1 

residue (data not shown). Whether such correlations will 

emerge when more crystal structures are published and 

the statistics of repeat conformations improve remains to 

be seen. For now, RVR1 – RVR2 correlations cannot be fully 

interpreted by the structural data available.  

  Repertoire of RVR1 amino acids 

 The crystal structures suggest that a RVR1 amino acid 

with a hydrogen bond donor in the  δ  or  ɛ  position of 

the side chain helps to stabilize the loop conformation 

and therefore TALE repeat structure (although the rare 

IG RVD shows that this is not an absolute requirement). 

Bottom Top

N

-1st Repeat

C

0th Repeat

 Figure 6    Structural basis of the 5 ′ -Thy recognition. 

 The C α -traces of the -1 st  and 0 th  repeats are shown in orange and 

brown color, respectively. The 5 ′ -Thy and its paired Ade are shown 

in grey, with heteroatoms colored by atom type and hydrogen bonds 

indicated by green dotted lines. The tryptophan side chain, which 

interacts via its indole ring with the 5′  -methyl group of Thy,  

belongs to the -1 st  repeat and is shown in all atom representation.    
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This observation is consistent with the absence of D, E, S, 

T, C and K in the RVR1 position, because the side chains 

of these amino acids are too long, too short, or cannot 

donate a hydrogen bond at neutral pH. Amino acids R, W 

and Q have hydrogen bond donor atoms in the  ɛ  position, 

but are probably not used because of their steric bulk. The 

absence of Q from the RVR1 position is not easy to explain 

on the basis of the structural data.  

  Repertoire of RVR2 amino acids 

 RVR2 amino acid composition also poses some puzzles. 

S interacts with purines as a hydrogen bond donor but 

T or C do not play this role, at least in natural TALEs, 

despite potential hydrogen bond donor atoms in the 

 γ  position. The C might not be used to avoid disulfide 

bond formation, but the explanation is not convincing 

because TALE repeats contain another C elsewhere in 

the sequence and operate in a reducing environment. 

The absence of T is altogether unclear. In contrast, it is 

not surprising that the longer or bulkier amino acids (E, 

Q, W and R) are not represented in the RVR2 position. 

Without repositioning or structural change, these amino 

acids would clash with the target bases. However, the 

argument does not seem to apply for the flexible K. How 

K bypasses the apparent length restriction remains to be 

elucidated.   

  Dependence of the TALE efficacy 
on the repeat number 
 Experiments have shown that the efficiency of TALE-

controlled transcription increases sharply at a threshold 

of around 10 repeats (Boch et al. , 2009 ). Ten (or eleven, 

according to the crystal structure) base pair steps are 

required for a full DNA turn. It was therefore tempting to 

speculate that the threshold behavior was the result of 

direct interactions between repeats that are distant from 

each other in amino acid sequence, but could be close in 

space after a complete superhelix turn. However, such 

contacts are not found in either the dHax3 or the PthXo1 

crystal structures. Instead, there is a gap of approxi-

mately 10  Å  between the translationally-related repeats 

(Figure 4). This gap could only be closed by major DNA 

bending in solution. Such distortion seems unlikely in 

light of the two independent crystal structures. Thus, the 

dependence of TALE efficacy on the number of repeats 

remains unexplained.  

  Enhancing TALEs to recognize 
additional DNA features ?  
 In the co-crystal structures of TALEs with DNA, the major 

groove side of the bottom DNA strand and the entire minor 

groove are completely solvent exposed, providing many 

additional interaction surfaces for sequence-specific con-

tacts. Could two TALE DNA-binding domains bind to the 

same duplex DNA, with one recognizing the top and the 

other the bottom strand ?  Although this would be attrac-

tive in principle, it is unfortunately not viable, because the 

inner repeat helices would clash. Whether other proteins 

can be found to exploit the solvent-exposed hydrogen-

bond donors and acceptors in the major groove of TALE-

bound DNA remains to be seen. In contrast, the exposed 

minor groove provides attractive possibilities for enhanc-

ing the specificity and affinity of TALEs for their targets. 

Many years ago, Derwan and colleagues developed custom 

small-molecule polymers that could be designed to recog-

nize an arbitrary DNA sequence on the minor groove side, 

with the aim of directing DNA cleaving or damaging agents 

to specific target sequences. N-methylimidazole, N-meth-

ylpyrrole, and N-methyl-3-hydroxypyrrole polyamide hair-

pins (Trauger et al. , 1996 ; Kielkopf et al. , 1998a,b ; White 

et al. , 1998 ) bind exclusively to the minor groove of DNA 

and should not clash with TALE DNA-binding domains. 

Whether TALEs and minor groove-binding polymers can 

really interact with DNA-independently, or whether they 

require mutually exclusive subtle DNA deformations, 

remains to be tested experimentally.  

  Linkage to effector domains, 
particularly nucleases 
 The current structures of natural and synthetic DNA 

binding domains do not shed light on the other func-

tionally important regions of TALE proteins, such as the 

type III export signals, or the activation domains (which 

might be fully or partially unstructured in the absence of 

their binding partners). The current structures also do not 

provide an explanation for the empirical rules that have 

been obtained for the  ‘ best ’  way to fuse FokI nuclease 

domains to TALE DNA-binding domains and for the best 

separation between target half sites. In the case of zinc 

finger proteins, fusions to FokI are most popular. However, 

other domains have also resulted in useful fusion pro-

teins, both for introducing double strand breaks into DNA 

(Schierling et al. , 2012 ) and for other reactions, such as 
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DNA recombination (Gordley et al. , 2007, 2009 ; Gersbach 

et al. , 2011 ; Prorocic et al. , 2011 ). It can be expected that 

structural understanding of TALE proteins will now spur 

the development of artificial sequence specific enzymes 

with a wide variety of applications.   
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