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ABSTRACT 

Human RECQL5 is a member of the RecQ helicase family which is implicated in genome 

maintenance.  Five human members of the family have been identified; three of them, BLM, 

WRN and RECQL4 are associated with elevated cancer risk. RECQL1 and RECQL5 have not 

been linked to any human disorder yet; cells devoid of RECQL1 and RECQL5 display 

increased chromosomal instability. Here, we report the physical and functional interaction of 

the large isomer of RECQL5, RECQL5β, with the human flap endonuclease 1, FEN1, which 

plays a critical role in DNA replication, recombination and repair. RECQL5β dramatically 

stimulates the rate of FEN1 cleavage of flap DNA substrates. Moreover, we show that 

RECQL5β and FEN1 interact physically and co-localize in the nucleus in response to DNA 

damage. Our findings, together with the previous literature on WRN, BLM and RECQL4’s 

stimulation of FEN1, suggests that the ability of RecQ helicases to stimulate FEN1 may be a 

general feature of this class of enzymes. This could indicate a common role for the RecQ 

helicases in the processing of oxidative DNA damage. 
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INTRODUCTION 

Helicases play important roles in the maintenance of genomic stability. They act in many 

DNA metabolic processes, including DNA replication, recombination, base excision repair 

and transcription (1-4).  DNA helicases of the RecQ family have a broad amino acid sequence 

homology to the Escherichia coli RecQ helicase. These 3’-5’ DNA helicases unwind a wide 

variety of potentially recombinogenic DNA structures, including four-way junctions, D-loops 

and G-quadruplex DNA.  

Humans have five RecQ homologs: RECQL/RECQL1, BLM/RECQL2, WRN/RECQL3, 

RECQL4 and RECQL5 (5). Defective RecQ helicase function causes genomic instability, 

which is manifested as an increase in the frequency of inappropriate recombination events. 

Mutations in BLM, WRN and RECQL4 give rise to the hereditary disorders Bloom, Werner 

and Rothmund-Thomson syndromes, respectively (6-9). These diseases are associated with 

chromosomal instability, premature aging and cancer predisposition. The RECQL1 and 

RECQL5 proteins have not been genetically linked to any diseases yet; however, mutations in 

RECQL1 and RECQL5 might predispose individuals to cancer. In contrast to the other human 

RecQ helicases, RECQL5 exists in at least three different isoforms (10). These isoforms are 

generated by alternative mRNA splicing from the RECQL5 gene that contains 19 exons. Two 

transcripts code for two small proteins, RECQL5α (with 410 amino acids) and RECQL5γ 

(435 amino acids) that contain the core helicase motifs. The third transcript encodes the larger 

RECQL5β isoform (991 amino acids). RECQL5β localizes to the nucleus, whereas the two 

smaller isoforms are cytoplasmic (10).  

RecQ helicases possess the so-called DExH helicase and RecQ-Ct (RecQ C-terminal) 

regions, which form the catalytic core of the enzyme (6,11). In addition to these conserved 

regions, RECQL5β contains a long C-terminal region that displays no homology to the other 

family members. In contrast to BLM and WRN that form oligomeric structures, the 
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RECQL5β is a monomeric protein (12). It contains two separate functional domains. The N-

terminal half of the protein contains the conserved DExH and Zn2+-binding domains that 

functions as a DNA-dependent ATPase and ATP-dependent 3’-5’ DNA helicase. The unique 

C-terminal portion possesses an efficient DNA strand-annealing activity (12). However, 

strand annealing activity was also seen with the helicase domain only, RECQL5α (13).  

Interestingly, RECQL5 has been found to interact with PCNA, Topoisomerase III α/β, Rad51 

and RNA polymerase II (10,12,14-18). The functional significance of all these interactions 

has not been fully explored. 

While the precise role of the human RECQL5 protein in genomic stability has yet to be 

determined, it has been found that inactivation of Recql5 in mouse embryonic stem cells and 

embryonic fibroblasts results in a significant increase in the frequency of sister chromatid 

exchanges, increased cancer susceptibility and a profound reduction in DNA replication after 

the treatment with a topoisomerase I inhibitor, camptothecin (19,20).   It has been suggested 

that RECQL5β is an important tumor suppressor that acts by preventing inappropriate 

homologous recombination (HR) events via Rad51 presynaptic filament disruption (15), thus 

implicating RECQL5 in the regulation of homologous recombination.  

Flap endonuclease 1 (FEN1) is a multifunctional endo/exonuclease that specifically 

recognizes 5’ flap single-stranded DNA (ssDNA) and regions of ssDNA at single strand-

double strand junctions (21-25). FEN1 is a 5’ to 3’ exonuclease that acts at nicks in duplex 

DNA and also catalyzes the removal of 5’ terminal RNA mononucleotide (1). FEN1 was 

initially identified as an essential enzyme involved in Okazaki fragment processing (26). 

Later, FEN1 was implicated in maintaining genomic stability (24,27) and described as a 

tumor suppressor protein (28). FEN1 haploinsufficiency in mice can also lead to tumor 

progression (29). Surprisingly, homozygous mutant (FEN1
-/-) cells were viable; however, 

compared with wild-type cells, FEN1
-/- cells exhibited a slow growth phenotype, probably due 
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to a high rate of cell death (30). More recently, FEN1 has been shown to have a role in 

telomere maintenance (31).  

FEN1 is associated with long patch base excision repair (LP-BER) by virtue of its ability 

to cleave DNA flap structures (32-34).  Through both affinity column chromatography and 

photoaffinity labeling, FEN1 has been found in a BER protein complex with uracil DNA 

glycosylase, AP endonuclease 1 (APE1), polymerase β (pol β), DNA ligase 1 and PARP-1 

(35-37). Moreover, it has been shown that the endonuclease activity of FEN1 is stimulated by 

APE1 (38,39).  Recently, physical and functional interactions of FEN1 with WRN and BLM 

have been characterized (40-43).  Both RecQ proteins stimulated FEN1 cleavage activity. We 

report here that purified RECQL5β protein stimulates FEN1 cleavage activity on 5’ssDNA 

flap, nicked duplex DNA and 5’ double-stranded flap substrates. We also show that both 

proteins physically interact and co-localize in the nucleus in response to oxidative stress and 

DNA damage. We propose that the mammalian RecQ proteins possess a generalized ability to 

stimulate FEN1 and thus have the potential to modulate the efficiency of reactions in which 

FEN1 participates.   

 

MATERIALS AND METHODS 

Recombinant proteins 

Recombinant human RECQL5β helicase was overproduced as a fusion protein with an 

intein-chitin-binding domain (CBD) self-cleaving affinity tag in the E. coli BL21-codon-Plus-

(DE3)-RIL strain (Stratagene), and purified as previously described (44). FEN1 was a 

generous gift from Dr. David Wilson III (National Institute on Aging, National Institutes of 

Health, Baltimore, MD, USA). Both proteins were judged to be >95% pure by protein gel 

electrophoresis and Simply Blue protein stain (Invitrogen, Figure 1A and B). 
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The helicase activity of the purified RECQL5β was verified by a standard helicase assay 

using either M13mp18-based or oligonucleotide-based partial duplexes (Figure 1C and D, 

respectively). The enzymatic activity of FEN1 was tested using oligonucleotide duplex with 1 

nucleotide (nt) 5’ flap (Figure 1E). 

 

DNA substrates 

DNA oligonucleotides were synthesized and PAGE purified by Midland Certified 

Reagent Co. (Midland, TX) or by Integrated DNA Technologies (San Diego, CA). The 

sequences of the oligonucleotides are shown in Table I. Template TEMP and upstream U25 

primers together with downstream primers FLAP00, FLAP01, FLAP30 and FLAP60 were 

designed to form duplex substrates with a nick, 1 nt 5’ flap, 30 nt 5’ ssDNA flap and 60 nt 5’ 

hairpin flap, respectively. Downstream primers were labeled at the 5’end (FLAP00, FLAP01, 

FLAP30) with T4 polynucleotide kinase (Optikinase, USB) and [γ32P] ATP (GE Health 

Sciences) or at the 3’-end (FLAP60) with terminal transferase (NEB) and [α32P]dATP (GE 

Health Sciences) followed by annealing as described previously (45).  GEN1, GEN2, GEN3 

and GEN4 oligonucleotides were used for creating duplex substrates with double stranded 

flaps. The bubble substrate was designed from oligonucleotides GEN5, GEN6 and GEN7.  

GEN1, GEN3 and GEN7 were 32P labeled at the 3’ end and annealed to form duplex with 

GEN2, GEN3 and GEN4 (for GEN1) or GEN1, GEN2 and GEN4 (for GEN3) or GEN5 and 

GEN6 (for GEN7). The marker substrate for GEN activity of FEN1 against the bubble 

substrate was created from 3’-end radiolabeled GEN9 annealed to GEN5, GEN6 and GEN8. 

The M13mp18-based partial-duplex substrate was prepared by annealing the HEL43 43-

mer to circular M13mp18 ssDNA (NEB) and by extension of this molecule by 1 nt using the 

Klenow fragment (NEB) and [α32P]dATP as described previously (44). The oligonucleotide-

Page 6 of 36Nucleic Acids Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Elzbieta Speina
Highlight

Elzbieta Speina
Highlight

Elzbieta Speina
Highlight

Elzbieta Speina
Highlight

Elzbieta Speina
Highlight



For Peer Review

 7 

based partial duplexes were designed by annealing 5’-end labeled 22-15A to 22-15B, and 3’-

end labeled HAIR49 to HAIR24.   

 

RECQL5β helicase assay 

Reactions mixtures (10 µl) contained either 0.5 nM M13mp18-based or 1 nt 37 nt-based 

or 1 nt 49 nt-based partial duplexes, 2 mM ATP and indicated concentrations of RECQL5β. 

Where indicated, replication protein A (RPA) was added at indicated concentrations. Helicase 

reactions with M13mp18-based or 37 nt-based partial duplexes were carried out in buffer HA 

(50 mM Tris-HCl pH 7.5, 50 mM NaCl, 5 mM MgCl2, 50 µg/ml BSA, 2 mM ATP, 1 mM 

DTT) and helicase reactions with 49 nt-based partial duplex were carried out in HB (30 mM 

HEPES pH 7.6, 40 mM KCl, 5% glycerol, 10 mM MgCl2, 100 µg/ml BSA). Mixtures were 

incubated at 37°C for 20 min, and terminated with the addition of 5 µl of SDS stop solution 

(2% SDS, 50 mM EDTA, 30% glycerol, 0.1% bromophenol blue, 0.1% xylene cyanol). 

Products were separated on 12% nondenaturing polyacrylamide gel (acrylamide to bis-

acrylamide, 37.5:1). Radiolabeled DNA was visualized using a Typhoon phosphorImager, 

(Typhoon 9400, GE Health Sciences). 

 

FEN1 incision assays 

Reactions (10 µl) contained 1 nM DNA substrate and indicated concentrations of 

RECQL5β (or BSA), RPA and/or FEN1 in 30 mM HEPES pH 7.6, 40 mM KCl, 5% glycerol, 

10 mM MgCl2, 100 µg/ml BSA. Where indicated, ATP was added to a final concentration of 

2 mM. RECQL5β (or BSA) was mixed with the substrate and buffer on ice, and preincubated 

for 10 min prior to the addition of FEN1. Where indicated, RPA was added and preincubated 

with RECQL5β before adding FEN1. Reactions were incubated at 37°C for 15 min (unless 

indicated otherwise), then terminated with the addition of 10 µl of formamide stop solution 
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(90% formamide, 20 mM EDTA, 0.1% bromophenol blue and 0.1% xylene cyanol), and 

heated to 95°C for 5 min. For kinetic experiments, reaction mixtures (50 µl) contained 1 nM 1 

nt 5’ flap duplex, 5 nM RECQL5β and 5 nM FEN1. Aliquots (5 µl) were removed at different 

reaction time points and mixed with the equal amounts of formamide stop solution. Products 

were resolved on 20% polyacrylamide, 8 M urea denaturing gels (acrylamide to bis-

acrylamide, 19:1). A Typhoon phosphorImager was used for detection and ImageQuant 

software (GE Health Sciences) was used for quantification of the reaction products. Percent 

incision was calculated from the equation: percent incision = [P/(S + P)] X 100, where P is 

the sum of the intensity of the bands representing incision products and S the intensity of the 

band representing the intact oligonucleotide. Data represent the mean of three independent 

experiments with standard deviations shown by error bars. 

 

Cell culture 

Human HeLa and HEK293T cell lines used in this study were maintained in Dulbecco's 

modified Eagle's medium (DMEM, Invitrogen) supplemented with 10% fetal bovine serum 

(Invitrogen). Cells were grown in a humidified 5% CO2 atmosphere at 37°C. 

 

Pull-down assays 

CBD-tagged RECQL5β was produced in E. coli BL21-CodonPlus(DE3)-RIL cells 

(Stratagene) as previously described (12). Cells harvested from a 10 ml culture were re-

suspended in 1 ml of NET-150 buffer [10 mM Tris (pH 8.0), 1 mM EDTA, 150 mM NaCl, 

10% (v/v) glycerol and 0.1% (v/v) Triton X-100] supplemented with a protease inhibitor 

cocktail (Complete, Mini; Roche) and disrupted by sonication followed by centrifugation at 

20,000xg for 45 min. Clarified cell extract (typically 50 µl-100 µl) was incubated with 20 µl 

of chitin beads (NEB) in a total volume of 400 µl of NET-150 buffer for 2 hours at 4°C. After 
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extensive washing with NET-150 buffer, beads were incubated with extract of 293T cells 

(800 mg of protein) or recombinant FEN1 protein or GST-FEN1 fragments (200 ng) in 400 µl 

of NET-150 buffer supplemented with ethidium bromide (50 µg/ml) for 2 hours at 4°C. 

Bound proteins were analyzed by Western blotting using rabbit polyclonal anti-FEN1 

antibody (28). 

 

Immunofluorescence 

HeLa cells, grown on 4-chambered slides (Lab-Tek), were transfected with the 

p3XFLAG-myc-CMV-24 plasmid (Sigma) containing cDNA encoding the full length 

RECQL5 using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

recommendations. Twenty-four hours post transfection, the cells were exposed to 100 µM 

hydrogen peroxide (in plain DMEM) for 30 min at 37°C. Cells were fixed with 3.7% 

paraformaldehyde in PBS for 15 min at room temperature and washed five times with PBS, 

then permeabilized with 0.2% Triton X-100 in PBS for 10 min on ice. After blocking in PBS 

containing 5% BSA for 1 h at 37°C or overnight at 4°C, slides were incubated 1 h at 37°C 

with primary antibodies, rabbit polyclonal anti-FLAG (Sigma, 1:200) and mouse monoclonal 

anti-FEN1 (Abcam ab462; 1:1000); all antibodies were diluted in blocking solution. Cells 

were then rinsed five times with PBS and incubated with Alexa Fluor 488-

conjugated donkey anti-rabbit and Alexa Fluor 647-conjugated goat anti-mouse secondary 

antibodies (Invitrogen A21240 and A21206, respectively; 1:1000) for 30 minutes at room 

temperature. After washing 5 times with PBS, cells were mounted with Vectashield Hard Set 

mounting medium with DAPI (Vector Labs). Images were captured by a Nikon Eclipse 

TE2000 confocal microscope and analyzed using Volocity-5 software (Perkin Elmer). 
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RESULTS 

 
RECQL5β stimulates the FEN1 cleavage reaction 

RECQL5β was tested for its ability to stimulate FEN1 because WRN, BLM and RECQL4 

have been shown to potently stimulate FEN1 (40-42, 46). The DNA substrate used in these 

studies consisted of a 19 bp duplex with a single unannealed 5’ nucleotide adjacent to an 

upstream 25 bp duplex (1 nt 5’ flap). The 1 nt 5’ flap substrate was susceptible to FEN1 

cleavage and 2 nt and 1 nt products were produced (Figure 2A, lane 2), as previously reported 

(47). These products result from FEN1 cleavage at the junction between the flap and the 

downstream double-stranded DNA and endonucleolytic cleavage of the first nucleotide in the 

downstream duplex DNA. In the presence of 5 nM FEN1, 12% of 1 nM substrate was incised 

(Figure 2A, lane 2, and B).  Under these conditions, we analyzed FEN1 cleavage as a function 

of RECQL5β concentration.  FEN1 cleavage was stimulated ~2-2.5-fold (Figure 2A, lane 3 

and 4, respectively, and B).  As expected, RECQL5β alone did not incise the substrate (Figure 

2A, lane 8). To confirm that the presence of RECQL5β caused true stimulation rather than 

this being an effect of RECQL5β stabilization of FEN1 in the reaction, we did a control 

reaction with BSA and found no stimulation of FEN1. In the presence of 5 nM FEN1 and 20 

nM BSA only 8% of 1 nM substrate was incised (Figure 2A, lane 9). 

RECQL5β, like other helicases, requires ATP for its helicase activity. To examine what 

effect helicase activity might have on the observed stimulation of FEN1, we added ATP to 

reactions and repeated the analysis (Figure 2A, lanes 10-18, and B).  In the presence of 5 nM 

FEN1 and 2 mM ATP, 43% of the 1 nM substrate was incised (Figure 2A, lane 11, and B). 

This increase in FEN1 activity was about 30% more than FEN1 cleavage in the absence of 

ATP (Figure 2A, lane 2, and B).  After addition of ATP, FEN1 cleavage increased by about 

30% at RECQL5β concentrations of 1.3 nM and 2.5 nM (Figure 2A, lane 12 and 13, 
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respectively, and B) in comparison to FEN1 cleavage without ATP (Figure 2A, lane 3 and 4, 

respectively, and B). These results indicate that the observed increase in cleavage products 

was the result of a higher initial rate of FEN1 incision activity in the presence of ATP.  The 

extent of the reactions was similar plus or minus ATP, 87-84% respectively. RECQL5β alone 

did not cleave the substrate and BSA did not stimulate FEN1 incision (Figure 2A, lane 17 and 

18, respectively).  Based on these results, we conclude that helicase activity of RECQL5β is 

not required for FEN1 stimulation. 

Kinetic analysis of the FEN1 catalyzed cleavage reaction on the 1 nt 5’ flap substrate 

showed a strong influence of RECQL5β on the rate of FEN1 incision (Figure 3A). In these 

experiments, equimolar concentrations of FEN1 and RECQL5β (5 nM) were used. The FEN1 

concentration used resulted in a reproducible incision of 6% of the 1 nM DNA substrate after 

15 min reaction incubated at 37°C (Figure 3B).  Stimulation of FEN1 incision by RECQL5β 

was detected at time points from 1 to 15 min.  After 3 min, FEN1 cleavage in the absence of 

RECQL5β was 1.5%; however, in the presence of RECQL5β, FEN1 cleaved 44% of the DNA 

substrate (Figure 3B).  FEN1 cleavage in the absence and presence of RECQL5β was linear 

with respect to time from 1-6 min (R2 = 1.0 and 0.97, respectively).  Linear regression 

analyses yielded reaction rates of 9.51 and 0.35 fmol product/min for the RECQL5β + FEN1 

and FEN1 only, respectively. This represents a 27.2-fold rate increase in the presence of 

RECQL5β.  At 12 and 15 minutes, the FEN1 cleavage reaction, in the presence of RECQL5β, 

achieved a plateau of 86-88% substrate incised.  In contrast, FEN1 alone only cleaved 6% of 

the substrate by the end of 15 min (Figure 3B).  

 

 

                             

Page 11 of 36 Nucleic Acids Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 12 

RECQL5β stimulates FEN1 cleavage of duplex DNA substrates containing a long 5’ 

ssDNA flap or a nick 

The ability of RECQL5β to stimulate FEN1 cleavage of the 1 nt 5’ flap substrate prompted us 

to examine whether RECQL5β can also affect the activity of FEN1 on oligonucleotide 

substrate with longer 5’ ssDNA flaps.  Single stranded DNA flap structures may have 

important biological functions as they are reaction intermediates during replication or during 

long patch base excision repair.  Flaps may also appear via strand displacement synthesis 

during unscheduled DNA synthesis by a DNA polymerase. RECQL5β’s ability to stimulate 

the FEN1 cleavage reaction on a 30 nt 5’ ssDNA flap structure was tested. FEN1 alone (0.1 

nM) incised 15% of the 1 nM substrate or 25% in the presence of 2 mM ATP (Figure 4A, lane 

2 and 11, and B), yielding two products, the 31 nt and to a lesser extent, the 30 nt product. At 

equimolar concentrations of RECQL5β and FEN1 (0.1 nM), 32% or 45% of the 5’ flap 

substrate molecules, in the absence or presence of ATP, respectively, was incised, a 2.1- or 

1.8-fold stimulation (Figure 4A, lane 4 and 13, and B).  In the absence of ATP, increasing 

RECQL5β’s concentration yielded 3.6-4.8-fold stimulation above FEN1’s activity alone 

(Figure 4A, lanes 5-7 and B). Likewise, in the presence of ATP, FEN1’s incision activity was 

stimulated 2.4-2.8-fold upon increasing the concentration of RECQL5β (Fig. 4A, lanes 14-16 

and B).  RECQL5β alone did not catalyze cleavage of the 30 nt flap DNA substrate (Figure 

4A, lane 8 and 17). BSA had no influence on the FEN1 incision (Figure 4A, lane 9 and 18). 

FEN1 has been shown to possess 5’ to 3’ exonuclease activity on nicked duplex DNA 

(48).  A nick in the DNA duplex may arise as a consequence of the concerted action of DNA 

repair enzymes such as DNA glycosylase and AP endonuclease at the sites of damaged bases. 

We tested the effect of RECQL5β on FEN1 cleavage activity at the site of the nick.  FEN1 (1 

nM) incised 22% or 33% of the nicked DNA duplex substrate in the absence or presence of 2 

mM ATP, respectively (Figure 5A, lane 2 and 11, and B). RECQL5β (0.3 nM) stimulated 
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FEN1 to incise 41% or 50%, depending on the presence of ATP, of the nicked DNA duplex, a 

1.9- or 1.5-fold stimulation of FEN1 exonuclease activity (Figure 5A, lane 4 and 13, and B).  

At equimolar concentrations of RECQL5β and FEN1 (1 nM), FEN1 cleavage increased to 

76% or 69% incision in the absence or presence of ATP, respectively, a 3.5- or 2.1-fold 

stimulation above FEN1 alone (Figure 5A, lane 6 and 15, and B).  RECQL5β has no 

endonuclease activity (Figure 5A, lane 8 and 17) and BSA did not stimulate FEN1’s activity 

(Figure 5A, lane 9 and 18). These results indicate that RECQL5β can activate FEN1’s 

incision of substrates containing a long 5’ ssDNA tail and FEN1’s 5’ to 3’ exonuclease 

activity on nicked duplex DNA. 

 

RECQL5β does not stimulate FEN1 cleavage of a 5’ hairpin flap substrate. 

It has been shown that flap substrates with secondary structures within the 5’ flap 

effectively inhibit FEN1 cleavage (41,49). Therefore, we tested RECQL5β’s ability to 

activate FEN1 cleavage on a DNA substrate containing a 5’ flap with a hairpin structure of 24 

nt in the annealed region (Supplementary Figure 1).  In the presence of 2 nM FEN1 about 

45% of the 1 nM substrate was incised, and the addition of RECQL5β did not activate FEN1 

(Supplementary Figure 1C lanes 3-10). Addition of 2 mM ATP and RECQL5β clearly 

inhibited incision by FEN1 (Supplementary Figure 1C lanes 15-22).    

To investigate if the RECQL5β helicase could unwind an annealed region within the 5’ 

flap and facilitate it’s cleavage by FEN1, a partial duplex substrate (1 nM), mimicking a 5’ 

hairpin flap substrate was constructed and used to screen for RECQL5β helicase activity.  In 

the presence of RPA, RECQL5β helicase displayed weak unwinding of the annealed region 

within the 5’ flap (Supplementary Figure 2A). Subsequently, we investigated FEN1 cleavage 

of the 5’ hairpin flap substrate in reactions supplemented with RECQL5β, 2 mM ATP and 

RPA. We tested two RECQL5β concentrations and neither showed FEN1 stimulation 
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(Supplementary Figure 2B). These results indicate that RECQL5β does not stimulate FEN1 

incision of a 5’ flap substrate with a secondary structure, and the helicase activity of the 

RECQL5β cannot facilitate this reaction. 

 

RECQL5β effects on GEN activity of FEN1 on double-stranded flaps and bubble 

substrates. 

The gap endonuclease (GEN) activity of FEN1 is critical for resolving stalled replication 

forks. It is responsible for cleavage of ssDNA regions that accumulate extensively in response 

to replication fork arrest (25). GEN activity specifically incises DNA replication-fork-like 

structures at the ssDNA region on either the lagging or the leading strand template. Therefore, 

DNA substrates were prepared with 3’ and 5’ double-stranded flap structures, which resemble 

DNA replication forks, and RECQL5β was tested for its ability to enhance FEN1 cleavage on 

such structures. FEN1 produced a GEN cleavage activity of 15% (2 nM FEN1) on the leading 

strand substrate (Figure 6A) and 24% (0.5 nM FEN1) on the lagging strand structure (Figure 

6B, and C). There was also a strong 5’ exonuclease activity of FEN1 on the leading strand 

(Figure 6A). RECQL5β did not increase GEN cleavage on the leading strand in the 

concentration range of 0.5-8 nM and addition of ATP slightly decreased the rate of GEN 

cleavage (Figure 6A, lanes 3-7, and lanes 12-16). However, RECQL5β in the absence of ATP 

significantly increased GEN cleavage on the lagging strand, ~2-2.7-fold (Figure 6B, lanes 5-

7, and C). Addition of ATP resulted in less efficient stimulation of lagging strand GEN 

activity by RECQL5β (Figure 6B, lanes 12-16, and C). RECQL5β alone had no incision 

activity (Figure 6A and B, lanes 8 and 17).  

Next, a bubble substrate was constructed which mimics a stalled replication fork 

structures (Supplementary Figure 3B).  FEN1 (0.5 nM) cleaved the ssDNA-dsDNA junctions 

of the bubble substrate, denoted as PGENa and PGENb (Supplementary Figure 3C).  The 
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exonuclease activity of FEN1 was also slightly active on the 5’ end of bubble structure 

generating P5’Exo (Supplementary Figure 3C). The cleavage of the bubble structure by FEN1 

alone (0.5 nM) resulted in 34% of PGENa and 5% of PGENb (Supplementary Figure 3C, lane 2). 

RECQL5β failed to stimulate FEN1’s GEN cleavage in the concentration range of 0.1-2 nM 

and addition of ATP slightly decreased the rate of the cleavage (Supplementary Figure 3C, 

lanes 3-7, and lanes 12-16).  

 

RECQL5β and FEN1 interact physically 

To determine whether RECQL5β and FEN1 interact physically, we performed affinity 

pull-down assays. RECQL5β was expressed in bacteria as a fusion with a CBD tag and bound 

to chitin beads. The beads were subsequently incubated with either total extract of 

exponentially growing human embryonic kidney cells HEK293T or with purified FEN1 

protein. We found that endogenous FEN1 was bound to RECQL5β beads, but not to control 

beads coated with CBD (Figure 7A). Recombinant FEN1 was found to be bound to both 

RECQL5β beads and beads coated with CBD only. However, the affinity of FEN1 for the 

RECQL5β beads was higher than that for the control, indicating a specific interaction (Figure 

7B). 

Affinity pull-down assays were also used to map the region on FEN1 that is important for 

the RECQL5β:FEN1 interaction. A graphic diagram of FEN1 and the GST fragments are 

shown in Figure 7C. As above, RECQL5β was bound to chitin beads then incubated with the 

purified GST-FEN1 fragments. As can be seen in Figure 7D, the fragment of FEN1 encoding 

the largest C-terminal fragment of FEN1 (#54) was preferentially bound by RECQL5β. 

To test whether RECQL5β and FEN1 interact in vivo, RECQL5β was immunoprecipitated 

from the HEK293T extract and the resulting immunoprecipitate was subjected to Western blot 
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analysis. We could not detect FEN1 in this immunoprecipitate, indicating that RECQL5β and 

FEN1 do not form a stable complex in vivo (data not shown). 

 

RECQL5β co-localizes with FEN1 in human cells 

We investigated the subcellular localization of 3XFlag-RECQL5β-Myc and endogenous 

FEN1 by confocal microscopy to explore whether 3XFlag-RECQL5β-Myc co-localizes with 

FEN1 before and after DNA damage. We transiently transfected HeLa cells with plasmid 

encoding a full length copy of 3XFlag-RECQL5-Myc encoding sequence. Twenty-four hours 

post transfection, the cells were treated with 100 µM H2O2 for 30 min to introduce oxidative 

stress and DNA damage. In asynchronous untreated HeLa cells, FEN1 and RECQL5β 

displayed diffused nuclear staining with some concentrated foci (Figure 8). In H2O2 treated 

cells, we observed that both FEN1 and RECQL5β formed distinct nucleolar foci and these 

foci co-localized (Figure 8). 

 

DISCUSSION 

FEN1 participates in many processes within the cell. Specifically, it has been shown to 

play a role in base excision repair, homologous recombination, lagging strand DNA 

replication, re-initiation of stalled replications forks and telomere stability (24,31,50).  Here, 

we report that human RECQL5β physically interacts with FEN1 and efficiently stimulates 

FEN1 cleavage activity on a variety of DNA substrates that are proposed intermediates in 

DNA replication and repair.  It has been reported recently that that mouse RECQL5β plays an 

important role in maintaining active DNA replication to prevent the collapse of replication 

forks and the accumulation of DSBs (20).  Additionally, RECQL5β is associated with the 

DNA replication machinery and is present at the sites of stalled replication forks (14). The 

identification of RECQL5β in a replication complex suggests that RECQL5β may play a 
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direct role in replication.  It has also been suggested that FEN1 participates in lagging strand 

synthesis in vivo (26) through the processing of Okazaki fragments.  RECQL5β may facilitate 

FEN1 cleavage of the remaining ribonucleotide (5’ flap substrates), a step required prior to 

the ligation of Okazaki fragments (1).  Our results revealing the ability of RECQL5β to 

potently stimulate cleavage of the 1 nt, as well as longer, 30 nt 5’ flap, of a DNA duplex 

(Figure 2-4) strongly support this idea.  Moreover, we show that RECQL5β is capable of 

stimulating FEN1 cleavage on a substrate that mimics the DNA replication fork; however, 

only on the lagging strand. RECQL5β failed to stimulate GEN activity on the leading strand 

(Figure 6). This finding might have important implications during DNA replication of the 

lagging stand by facilitating processing of Okazaki fragments. The 3’ to 5’ helicase activity of 

RECQL5β could function during replication restart, RECQL5β may translocate to the stalled 

fork and ensure efficient removal of the new lagging strand by its abilities to displace the 

nascent Okazaki fragment and stimulate the nuclease activities of FEN1, similar to a model 

proposed for the coordinate action of Escherichia coli RecQ and RecJ (51). This would 

prevent deleterious DNA strand breakage and elevated recombination. 

Previously, human WRN, BLM and RECQL4 have been shown to stimulate FEN1 

catalytic activity (25, 40-42, 46). Thus it seems that there is a conserved interaction between 

the human RecQ helicases with FEN1 which is likely to be important for the efficient 

processing of DNA. In contrast to RECQL5β, WRN has the ability to stimulate FEN1 

cleavage on both strands, lagging and leading, within the replication-like-structure as well as 

in collapsed replication fork substrate (25). The stimulation of FEN1 activity by WRN is 

independent of WRN catalytic activities and is mediated by a C-terminal region of the WRN 

protein (40). We also demonstrate that helicase activity is not required for stimulation of 

FEN1 cleavage by RECQL5β (Figure 2). Interestingly, it has been reported recently that 
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inhibition of RNA polymerase II transcription by RECQL5β is also independent of its 

helicase activity (52).  

FEN1 is a multifunctional protein and more than 20 proteins are known to interact with it. 

Recently, deletion and alanine substitution mutagenesis of FEN1 was used to map sites where 

PCNA, WRN, APE1, EndoG and the Rad9-Rad1-Hus1 complex interact with FEN1 (53). All 

the proteins tested interacted with the very C-terminus of FEN1. Consistent with how other 

proteins interact with FEN1, we show that RECQL5β's interaction with FEN1 is mediated by 

the C-terminus of FEN1 (Figure 7).  

There are growing pieces of evidence suggesting that the RecQ DNA helicases operate in 

various DNA repair processes induced by DNA replication defects, base excision repair and 

non-homologous end-joining of double strand break repair. A role for FEN1 in BER is well 

documented both in vitro and in vivo (32,54). After the damaged base is replaced by the 

correct one through the concerted action of DNA glycosylases, APE and Pol β, the repair is 

directed into different sub-pathways, single-nucleotide and LP-BER, depending on whether 

the sugar residue in the flap has been further modified.  The LP-BER pathway requires FEN1 

to effectively remove the modified 5’-dRP-containing flap. Pol β has been previously 

proposed to independently displace the downstream DNA strand and create a 2-11 nt flap for 

FEN1 cleavage (32,55). However, Pol β DNA synthesis on DNA containing a flap or nicked 

DNA is poor indicating that generation of a nicked flap intermediate would be a rate-limiting 

step of LP-BER DNA synthesis. A recent study demonstrated that FEN1 cleavage activity is 

critical in Pol β-mediated LP-BER DNA synthesis because it removes the blocking one 

nucleotide flaps (56). According to the proposed hypothesis of a “Run and Hit” mechanism, 

Pol β relies on FEN1 cleavage to remove these barriers and proceed with LP-BER.  

DNA substrates containing flaps, as used in our study (Table 1), can mimic a LP-BER 

intermediate because the single-nucleotide gap has already been filled. The fact that 
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RECQL5β cooperates with FEN1 on such intermediates poses a question of whether 

RECQL5β may be engaged in LP-BER in vivo by stimulating FEN1 to cleave the one 

nucleotide or longer flap. We show that in HeLa cells treated with hydrogen peroxide, which 

introduces oxidative damage to DNA, there is mobilization of RECQL5β and FEN1 and the 

foci of both proteins co-localize (Figure 8). Future work will focus on elucidating the 

potential role of RECQL5β in LP-BER in vivo. 

Previously, WRN has been shown to interact and stimulate strand displacement DNA 

synthesis by Pol β (57,58). This prompted us to check whether RECQL5β could also 

cooperate with Pol β as well as with another important BER enzyme, AP endonuclease, 

APE1. However, our results showed that RECQL5β does not stimulate Pol β or APE1 (not 

shown). 

To summarize, our results suggest that RECQL5β can modulate FEN1’s activity and since 

FEN1 participates in many DNA metabolic pathways, the expression of RECQL5β has the 

potential to influence all of these FEN1-dependent processes as well. Further research is 

needed to evaluate the true set of pathways in which RECQL5β participates. 
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Table I. Oligonucleotide sequences for DNA substrates (5’ to 3’) 
 

Oligonucleotide,  size Sequence 

TEMP, 44 nt 

 

Downstream primers 

FLAP00, 19 nt 

FLAP01, 20nt 

FLAP30, 49 nt 

FLAP60, 79 nt 

 

Upstream primer 

U25, 25 nt 

 

GEN primers 

GEN1, 34 nt 

GEN2, 18 nt 

GEN3, 30 nt 

GEN4, 14 nt 

GEN5, 80 nt 

 

GEN6, 40 nt 

GEN7, 80 nt 

 

GEN8, 20 nt 

GEN9, 20 nt 

 

Helicase primers 

HEL43, 43 nt 

22-15A, 37 nt 

22-15B, 37 nt 

HAIR49, 49 nt 

 

HAIR24, 24 nt 

GCACTGGCCGTCGTTTTACGGTCGTGACTGGGAAAACCCTGGCG 

 

 

GTAAAACGACGGCCAGTGC 

AGTAAAACGACGGCCAGTGC 

TTTTTTTTTTTTTTTTTTTTTTTTTTCCAAGTAAAACGACGGCCAGTGC 

AGGTCTCGAGGCCTGCTCCTGCTCTATTATGAGCAGGAGCAGGCCTC 

GAGACCTTTCCAAGTAAAACGACGGCCAGTGC 

 

CGCCAGGGTTTTCCCAGTCACGACC 

 

 

GATGTCAAGCAGTCCTAACTTTGAGGCAGAGTCC 

TTAGGACTGCTTGACATC 

GGACTCTGCCTCAAGACGGTAGTCAACGTG 

CACGTTGACTACCG 

GTTAAGATAGGTCTGCTTGGGATGTCAAGCAGTCCTAACTGGAAATC 

TAGCTCTGTGGAGTTGAGGCAGAGTCCTTAAGC 

CTCCACAGAGCTAGATTTCCAGTTAGGACTGCTTGACATC 

GCTTAAGGACTCTGCCTCAAATCGTCAGGGTTTCTAAAGAAGCCGAC 

GGTAGTCAACGTGCCAAGCAGACCTATCTTAAC 

GCTTTAGGACTCTGCCTCAA  

CCAAGCAGACCTATCTTAAC 

 

 

CTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGGGTACCG 

TTTTTTTTTTTTTTTGAGTGTGGTGTACATGCACTAC 

GTAGTGCATGTACACCACACTCTTTTTTTTTTTTTTT 

GAGCAGGAGCAGGCCTCGAGACCTTTCCAAGTAAAACGACGGCCAG 

TGCCAGTGC 

AGGTCTCGAGGCCTGCTCCTGCTC 

 

Duplex DNA substrates containing flap were constructed by annealing appropriate FLAP oligonucleotide and 

upstream primer to 44-mer template oligonucleotide. FLAP00, FLAP01, FLAP30 and FLAP60 were used to 

construct the nicked duplex, 1 nt 5’ flap duplex, 30 nt 5’ flap duplex and 60 nt 5’ flap duplex substrates, 

Page 24 of 36Nucleic Acids Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Elzbieta Speina
Highlight

Elzbieta Speina
Highlight



For Peer Review

 25 

respectively. Double-stranded flap and the bubble substrates were created by annealing together 

GEN1/GEN2/GEN3/GEN4 or GEN5/GEN6/GEN7, respectively. The M13mp18-based or oligonucleotide-based 

partial duplexes were prepared by annealing the HEL43 43-mer to circular M13mp18 ssDNA or 22-15A to 22-

15B or HAIR49 to HAIR24, respectively. 
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FIGURE LEGENDS 

Figure 1. Enzymatic activities of purified RECQL5β and FEN1. (A,B) 4-12% Bis-Tris 

PAGE showing purified RECQL5β protein and purified FEN1 protein, respectively. (C) DNA 

helicase assay of RECQL5β using a 44 nt M13mp18-based duplex radiolabeled at 3’-end. 

Reactions were carried out at 37°C for 30 min and contained 0.5 nM DNA, varying 

concentrations of RECQL5β (as indicated) and 2 mM ATP. The reaction products were 

analyzed by 10% nondenaturing PAGE. Radiolabeled species were visualized by 

autoradiography. The last lane contains heat-denatured substrate. (D) Flap endonuclease 

activity of FEN1. Reactions were carried out at 37°C for 15 min and contained 1 nM 43 nt 

duplex with 1 nt 5’ flap radiolabeled at 5’-end, and varying concentrations of FEN1 (as 

indicated). The reaction products were analyzed by 20% denaturing PAGE. 

 
Figure 2. RECQL5β stimulates FEN1 cleavage of 1 nt 5’ flap DNA. Reactions (10 µl) 

containing 1 nM 1 nt 5’ flap DNA substrate, 5 nM FEN1 and the indicated amounts of 

RECQL5β, or 20 nM BSA, were incubated at 37°C for 15 min under conditions described in 

the Materials and Methods. The presence of 2 mM ATP in reaction mixtures is indicated 

(lanes 10-18). (A) A phosphorimage of a typical gel. (B) Percent incision from the data shown 

in (A), data points are the mean of three independent experiments with SDs indicated by error 

bars.  

Figure 3. Kinetics of FEN1 cleavage of the 1 nt 5’ flap substrate in the presence or 

absence of RECQL5β. Reactions (70 µl) containing 1 nM 1 nt 5’-flap DNA substrate and 5 

nM FEN1 were incubated at 37°C, and aliquots were removed at 1, 3, 6, 9, 12, and 15 min. 

The reactions conducted in the presence of RECQL5β contained 5 nM RECQL5β. (A) 

Phosphorimage of a typical gel from a kinetic experiment. Increasing times of incubation (1-

15 min) for the FEN1 cleavage reactions conducted in the absence of RECQL5β (lanes 3-8) 

or the presence of RECQL5β (lanes 9-14) are indicated. Fifteen minutes incubations 
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conducted in the absence of RECQL5β + FEN1 or FEN1 are shown in lanes 1 and 2, 

respectively. (B) Percent incision from the data shown in (A), data points are the mean of 

three independent experiments with SDs indicated by error bars. Open circles, FEN1 alone; 

filled circles, FEN1 + RECQL5β. 

Figure 4. RECQL5β stimulates FEN1 cleavage of duplex DNA containing 30 nt 5’ flap. 

Reactions (10 µl) containing 1 nM 30 nt 5’ flap substrate, 0.1 nM FEN1 and the indicated 

amounts of RECQL5β, or 0.8 nM BSA, were incubated at 37°C for 15 min. The presence of 2 

mM ATP in reaction mixtures is indicated (lanes 10-18). (A) A phosphorimage of a typical 

gel. (B) Percent incision from the data shown in (A), data points are the mean of three 

independent experiments with SDs indicated by error bars. 

Figure 5. RECQL5β stimulates FEN1 cleavage of duplex DNA containing a nick. 

Reactions (10 µl) containing 1 nM nicked duplex substrate, 1 nM FEN1 and the indicated 

amounts of RECQL5β, or 2 nM BSA, were incubated at 37°C for 15 min. The presence of 2 

mM ATP in reaction mixtures is indicated (lanes 10-18). (A) A phosphorimage of a typical 

gel. (B) Percent incision from the data shown in (A), data points are the mean of three 

independent experiments with SDs indicated by error bars. 

Figure 6. RECQL5β effects on FEN1’s GEN activity on double-stranded flap substrates. 

Reactions (10 µl) containing 1 nM 3’ double-stranded flap substrates (A, Leading) or 5’ 

double-stranded flap substrate (B, Lagging), the indicated amounts of FEN1 and RECQL5β, 

or BSA, were incubated at 37°C for 15 min. The presence of 2 mM ATP in reaction mixtures 

is indicated (lanes 10-18). (C) Percent incision from the data shown in (B), data points are the 

mean of three independent experiments with SDs indicated by error bars. 

Figure 7. RECQL5β and FEN1 interact directly. Binding of FEN1 from 293T extracts (A) 

or purified FEN1 (B) to chitin beads coated with Chitin Binding Domain (CBD) or 

RECQL5β-CBD. (C) Diagram of GST-FEN1 fragments used to define which domain of 
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FEN1 RECQL5β interacts with. (D) Binding of GST fused to various C-terminal fragments of 

FEN1 to chitin beads coated with RECQL5β-CBD. 

Figure 8. Co-localization of endogenous FEN1 and overproduced 3xFlag-RECQL5β-Myc 

in HeLa cells treated with H2O2. Twenty-four hours after transfection of plasmid encoding 

3XFlag-RECQL5β-Myc, non-synchronized cells were incubated in the presence or absence of 

100 µM H2O2 for 30 min and then fixed. Cells were triply stained for FEN1 (red), 3xFlag-

RECQL5β-Myc (green) and DNA (blue) as described in the Materials and Methods, and 

analyzed by confocal microscopy. Yellow color in superimposed images (merge) indicates 

co-localization of FEN1and 3xFlag-RECQL5β-Myc. White bar represent 50 µm. 
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