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Abstract 

 

Surface ice and cryoconite holes of two types of polythermal Svalbard Glaciers (Hans Glacier 

- grounded tidewater glacier and Werenskiold Glacier - land-based valley glacier) were 

investigated in terms of chemical composition, microbial abundance and diversity. Gathered 

data served to describe supraglacial habitats and to compare microbe-environment 

interactions on those different type glaciers. Hans Glacier samples displayed elevated nutrient 

levels (DOC, nitrogen and seston) compared to Werenskiold Glacier. Adjacent tundra 

formations, bird nesting sites and marine aerosol were candidates for allochtonic enrichment 

sources. Microbial numbers were comparable on both glaciers, with surface ice containing 

cells in the range of 104 mL-1 and cryoconite sediment 108 g-1 dry weight. Denaturating 

gradient gel electrophoresis band-based clustering revealed differences between glaciers in 

terms of dominant bacterial taxa structure. Microbial community on Werenskiold Glacier 

benefited from the snow-released substances. On Hans Glacier this effect was not as 

pronounced, affecting mainly the photoautotrophs. Over-fertilization of Hans Glacier surface 

was proposed as the major factor, desensitizing the microbial community to the snow melt 

event. Nitrogen emerged as a limiting factor in surface ice habitats, especially to Eukaryotic 

algae.  

 

 

Introduction 



Glaciers are described by the scientific community as highly dynamic systems, constantly  

balancing between ice mass accumulation (Meier, 1973; Jansson, 1999), and ablation 

determined by surface energy balance (Lang, 1968; Hock, 1998) and calving (Brown et 

al.,1982). However, biologically, glacial ice has been regarded for long to be inactive or in 

later years to act only as a life-entrapping medium, collecting and preserving deposited 

microorganisms, derived via atmospheric precipitation (Butinar et al. 2007). Recent studies 

have revealed that parts of a glacier with certain physical and chemical conditions can be a 

relatively favorable environment that supports active and diverse communities of not only 

micro- but also macrobiota (Hodson et al., 2008, Anesio and Laybourn-Parry, 2012). The 

ablating glacier surface receives solar radiation, yielding liquid water essential for biological 

processes and is covered by debris particles to a varying degree (debris amount generally 

increases toward the glacier terminus) which act as a source of biogenic elements like 

nitrogen and phosphorus (Franzetti et al. 2013; Anesio et al. 2009; Kennedy, 1993). The dark 

dust deposit, known as cryoconite in sufficient quantities reduces ice surface albedo and 

accelerates melting. As the ice melts, a water-filled hole forms, into which the dark material 

sinks – a so called cryoconite hole (Anesio et al. 2010). When the melt processes gradually 

take place during the season (surface melt of winter snow) they cause the snow line to recede 

upward the glacier and further ablation of exposed ice. Consequently, the ablation zone comes 

to resemble a rigid ice sponge saturated with water and enriched with mineral and organic 

wind-borne particles capable of supporting life. These organisms however have to struggle 

with intense UV radiation, freeze-thaw cycles, low pH, nutrient deficits and other damaging 

factors (Edwards et al. 2014). 

To get more insight into the glacial biome, researchers compared glaciers on global and local 

scales, but only few comparisons between supraglacial microbial communities have been 

published (Cameron et al. 2012; Edwards et al. 2011, 2013; Porazinska et al. 2004). 

Cryoconite holes have been the major focus of these studies. Although differences between 

Arctic and Antarctic glaciers were clear and easy to explain (the authors assumed variations in 

carbon content), the ones between neighboring glaciers were also apparent but much more 

difficult to elucidate. Edwards et al. (2011, 2013) explored three Spitsbergen valley glaciers 

and found out, that bacterial communities present in cryoconite holes show some differences 

between those glaciers, yet they harbor distinct lineages, unlike those that dwell in adjacent 

terrestrial habitats. Ridgelines between the studied glaciers, different meltwater drainage 

patterns and environmental pressure have been postulated to be responsible for the 

discrepancies between glacier communities. However, no other factors (chemical or physical) 

have been showed to be of influence. Porazińska et al. (2004) investigated a similar situation 

in Taylor Valley, Antarctica. These authors found, that cryoconite holes differ from glacier to 

glacier not only by means of physical parameters, but also in terms of organism diversity, 

mainly in the quality of primary producers. Here, freshwater reservoirs and nitrogen rich soils 

in the particular glaciers vicinity were postulated as possible biota and nutrient sources, but 

many occurring phenomena have not been explained. 

The information on comparative glacial microbiology remains scarce, involving mainly valley 

glaciers. Here, we investigate and compare microbial communities and their development on 

two types of polythermal Svalbard Glaciers. Hans Glacier is a grounded tidewater glacier 



which flows into the fjord of Hornsund in southern Spitsbergen. Werenskiold Glacier is a 

land-based valley glacier, next to Hans Glacier, but flowing from east to west (Pälli et al. 

2003). To our knowledge a comparison of microbial communities in supraglacial habitats 

between a tidewater and a land-based valley glacier has never been presented. Furthermore, 

Hans Glacier has never been investigated as a microbial habitat, despite its deep glaciological 

description (Grabiec et al. 2012; Migała et al. 2006; Oerlemans et al. 2011) and extensive 

microbiological works on the neighbouring Werenskiold Glacier throughout many years 

(Stibal et al. 2006; 2007; 2008; 2009; Kaštovská et al. 2007). 

We hypothesize that glacier tongues, originating from the same ice-cap, are influenced by 

their immediate environmental surroundings, which is reflected in microbial community 

development of their supraglacial habitats. We expect a more abundant and active microbial 

community to flourish on a glacier surface experiencing an intense enrichment in organic and 

inorganic biogenic substances due to the proximity to the ocean, bird nesting sites and tundra 

formations. To test this hypothesis we compared the glaciers’ microbial communities in terms 

of abundance and diversity and investigated spatial variation on the ablation zone and 

environmental controls of microbial processes. Physico-chemical and biological data were 

analyzed through simple regression and principal component analysis in order to provide 

insight into the still limited knowledge regarding interactions between glaciers and their 

inhabitants. 

 

Materials and Methods 

 

Sites and sampling 

Hans and Werenskiold Glaciers are located on the north shore of the Hornsund Fiord at 

Spitsbergen Island (Svalbard Archipelago) in Arctic. Hans Glacier, a grounded tidewater 

glacier has a surface of about 57 km2 and its bottom reaches 100 m below sea level. Maximum 

ice thickness was estimated to be 400 m. Werenskiold Glacier is a land-based valley glacier 

next to Hans Glacier. It occupies an area of 27.11 km2 with a maximum ice thickness of 235 ± 

15 m (Pälli et al. 2003). An extensive, scarcely vegetated forefield stretches in front of this 

glacier for ca 4km to the fjord shore with several proglacial kettle lakes (Kabala and Zapart, 

2012). Both of these glaciers are separated from the neighbouring tundra and river-lake 

ecosystems by tall lateral moraines and mountain ridges (Pälli et al. 2003). In the Hans 

Glacier vicinity large nesting places of several bird species have been established (Jakubas et 

al. 2008). 

 

Ice and cryoconite material were taken from 5 points on the glaciers surface in a transect 

running up the glacier, from glacial terminus area to the snow line at the top of the ablation 

zone (Fig. 1). The transect on Hans Glacier had a length of 5120 m and on Werenskiold 

Glacier – 3420 m. Ice samples were termed HI (Hans Glacier) and WI (Werenskiold Glacier) 

with HI1/WI1 the first point on the ablation zone and HI5/WI5 the snow line point. 

Cryoconite samples were termed HC2 to HC5 for Hans Glacier and WC1 to WC5 for 

Werenskiold Glacier, each number indicating the same area as the surface ice samples (no 



cryoconite holes were found in HI1 area). Locations of the sampling points are presented in  

Table S1 (Supplementary Materials). 

During August of 2013, ice from the glacier’s surface (approx. 20 cm) was crushed 

with an 70% EtOH sterilized and deionized water-washed Tonar ice auger (158 cm long, 130 

mm diameter), collected using sterile plastic spatulas and placed into sterile plastic bags. The 

crushed ice was gathered from 5 points per sampling site, in an area of 100 m2. Pooled cores 

totaled 3 kg per site. Cryoconite holes were drained of water and sediment with a 160 mL 

sterile plastic syringe, and the material was transported in 500 mL sterile bottles to a field 

laboratory and processed within 2 hours. Five cryoconite holes per site were drained and 

pooled. A duplicate set of samples was stored at -20°C and further research was conducted at 

the Department of Microbiology (University of Warmia and Mazury, Olsztyn, Poland) and 

Institute of Biochemistry and Biophysics of the Polish Academy of Sciences (Warsaw, 

Poland). 

 

Measurement of ice and cryoconite components 

Chloride, sulfate, nitrate, sodium, potassium, calcium and magnesium ion concentrations were 

determined by high-pressure liquid chromatography (HPLC) in a Shimadzu Prominence 

modular HPLC model device. Phosphates, total phosphorus (after mineralization), total iron 

and silicate contents were measured in a Shimadzu UV 1601 spectrophotometer, while 

nitrates were measured on an Epoll-Eco 20 spectrophotometer (Standard Methods 1980, 

Hermanowicz et al. 1999). Total organic carbon (TOC), dissolved organic carbon (DOC), 

particulate organic carbon (POC) and total nitrogen contents were determined in a Shimadzu 

TOCV-CSH organic carbon analyzer with a TNM-1 total nitrogen analyzer attachment. 

Particulate content in water was determined by filtering the sample through a combusted 

Whatman GF/C glass fibre filter (1.2 µm pore size) which was then dried at 105ºC; organic 

matter content was measured as that amount lost on ignition after combustion at 550ºC. 

Chlorophyll a and pheophytin concentrations were calculated after the Lorenzen equation 

after extraction in acetone (at 4ºC) and spectrophotometry. A DOC spectrum was determined 

in a quartz cuvette at 260 nm in a Schimadzu UV-1601 bichannel scanning spectrophotometer 

(Shinichi et al. 2004). The spectrum was corrected against a demineralized water background. 

SUVA (specific UV absorbance) was calculated as the relative content of aromatic matter 

(=Abs260 x 1000 DOC-1). 

 

Sample preparation for microbiology 

Ice samples were allowed to melt in a refrigerator (4°C) before being processed for 

microbiological analyses. 1 ml of cryoconite-water mix was placed in a 2 ml sterile plastic 

Eppendorf-type tube and centrifugated at 9000 rpm for 3 min in a MPW-52 microcentrifuge, 

to separate the sediment from the water. After discarding the water part, the tube was 

weighted. 1 ml of melted, filter and heat sterilized melted glacier ice was added and the 

sediment was resuspended by vortexing the tube at 1000 rpm (Biosan type V-1 plus Personal 

Vortex) for 5 min. A duplicate test tube with sediment was used for dry weight (d.w.) 

determination after 24-h incubation at 65 °C in a dry box with circulating air (Dowgiałło 



1975). Suspensions after vortexing were then stored in the refrigerator (4°C) for 10–20 min to 

allow larger particles to settle. Aliquots of melted ice (1 mL, 0.5 mL and 0.1 mL) and 

cryoconite suspension dilutions (10-1, 10-2, 10-3; 0.1 mL each) were plated on R2A agar 

(Biocorp). Inoculated plates were incubated in darkness at 4°C for 6 weeks. Sub-samples for 

total counts (TCs) were fixed with buffered formalin to a final concentration of 1 %. 

Additionally 300 mL of melted ice was run through a 47 mm polycarbonate filter with 0.2 µm 

pore size. The filter was placed in a 50 mL sterile plastic cup and shaken with 20 mL of 

melted ice of the same origin point. The suspension was frozen for further analysis.  

 

Microbial abundance 

Total counts (TC) were determined in 5 mL of melted glacier ice and 1 mL of 102 diluted 

sediment suspension. TCs were determined by epifluorescence microscopy using 4, 6-di-

amidino-2-phenylindole (DAPI) on black Nuclepore polycarbonate 0.2 µm pore size filters 

(Porter and Feig, 1980), under a Nikon E-200 microscope with a 100 W Hg lamp and 1009 

CFI 60 oil immersion objective, with a digital DS Cooled Camera Head DS-5Mc-U1, and a 

filter block of wavelengths EX 330-380, DM 400, BA 420. Images of fields were analyzed in 

Nikon NIS Elements BR 2.30 and MultiScan v. 14.02 (computer scanning systems). A 

minimum of 400 cells in 20 fields per sample were counted automatically in the image 

analysis system. Average values of three measurements using three independently prepared 

filters were calculated. Dividing cells were counted according to Hagström et al. 1979. 

Photoautotrophs, including cyanobacteria and photoautotrophic eukaryotes, were counted 

under blue 450–490 nm (B-2A Nikon filter) and green 510–560 nm (G-2A Nikon filter) light 

excitation in a epifluorescence microscope (Putland and Rivkin, 1999). Cyanobacteria were 

distinguished from photoautotrophic eukaryotes because of the former’s gold-yellow 

autofluorescence (Rassoulzadegan and Sheldon 1986). Culturable microorganisms abundance 

was performed by CFU enumeration after 42 days of incubation on R2A agar. 

 

Denaturating gradient gel electrophoresis analysis (DGGE) 

The 500 mL water samples were vacuum filtered through a 0.2-µm pore-sized (ø 47 mm) 

white polycarbonate membrane filter (Millipore GTTP) mounted on a sterile bottle top filter 

holder (Nalgene). Total DNA was extracted from membranes with the use of an UltraClean™ 

Water DNA Isolation Kit (MoBio, Carlsbad, CA) in accordance with the manufacturer’s 

protocol. DNA quality and yield were measured with a NanoVueTM spectrophotometer (GE 

Healthcare Life Science, Germany). The extracted DNA was stored at -20 °C until further 

use. DNA quality (size) and quantity was checked by electrophoresis in 0.8% (w/v) horizontal 

agarose gel run in 0.5% TBE (tris-borate-ethylenediaminete-triacetate, pH 8.3) buffer and 

stained with 0.9 µg mL-1 ethidium bromide (Sambrook et al., 1989). A molecular size marker 

(1-kb ladder) was used as the reference. 

Dominant bacterial communities were distinguished by DGGE analysis and electrophoresis 

performed with a D-Code Universal Mutation Detection System (BioRad Laboratories, USA). 

A 1 µL aliquots (roughly 5-10 ng in undiluted form) of each DNA was amplified by PCR 

mixture containing: 5 µL of 10x·buffer (Sigma Aldrich Co.), 6.0 µL of 25 mM MgCl2 (Sigma 

Aldrich Co.), 1.2 µL of 20 mg ml-1 BSA (Sigma Aldrich Co.), 0.4 µL of 25 mM dNTP 

(Sigma Aldrich Co.), 0.5 µL of 20 µM in each primer, 0.2 µL of 5 U µL-1 Taq DNA 



polymerase (Sigma Aldrich Co.) and 35.2 µL of PCR-grade water, in a total volume of 50 µL. 

The primers used were 341f with GC clamp (5’- GC-CC TAC GGG AGG CAG CAG-3’) 

complementary to position 341 to 357 and 907r (CCG TCA ATT CMT TTG AGT TT) 

complementary to positions 926 to 907 (Escherichia coli numbering) (Muyzer et al., 1993, 

Muyzer et al., 1998). The samples were loaded on 6% acrylamide gel with a denaturing 

gradient of 35–70% (where 100% denaturant is 7 M urea and 40% formamide). The gels were 

run at 60V for 17 h at 60oC. The electrophoretic products were stained by gently agitating the 

gel for 30 min in 100 mL of 1×TAE containing 5 µL 1:10000 dilution of SYBR Gold nucleic 

acid stain (Invitrogen, Life Technologies, UK) in DMSO. DGGE banding patterns were 

visualized with UV transillumination and photographed using the Gel Doc 2000 gel 

documentation system (BioRad Laboratories, USA). DGGE gel images were analyzed by 

Quantity One software in the GelDoc gel documentation system (BioRad Laboratories, USA). 

Gel bands were identified using GelCompar software to create the presence-absence matrix 

described by Crump and Hobbie (2005). Each band represents a bacterial Operational 

Taxonomic Unit (OTU). The presence or absence of a band in each line was converted to 

binary matrix to access data for statistical analysis. 

 

Functional diversity of the microbial community 

Filter concentrated ice and cryoconite suspensions have been adjusted to optical transmittance 

of 0.9. 100 µL aliquots of each suspension were added to each well of Ecoplate microplates 

(Biolog Inc., Hayward,  CA). The plates were incubated in darkness at 4°C, the color 

development was measured at 590 nm with a microplate reader (OmniLog) and cellular 

respiration was measured kinetically by determining the colorimetric reduction of tetrazolium 

dye. Data were collected approximately twice a week over a 65 day period. The EcoPlate 

Biolog assays assessed the ability of a mixed microbial community to utilize any of 31 carbon 

compounds as the sole carbon source (+ one control well with no-carbon). Absorbance data 

from the different reading times (given in OmniLog arbitrary units) were first blanked against 

the time “zero” reading and then the values  were blanked against the respective control well 

containing no-carbon source. Positive values were scored as the communities ability to utilize 

given carbon source. The metabolic diversity of microbial communities was estimated as 

substrate richness (the number of substrates utilized). To compare the effect of a specific 

treatment, substrate utilization data were also subdivided into 5 substrate categories 

representing different substrate groups (carbohydrates, carboxylic and acetic acids, polymers, 

amino acids and amines) (Weber and Legge, 2009). 

 

Statistics 

Simple regression analysis between biological and environmental factors was carried out in 

STATISTICA v. 9 (StatSoft). A principal correspondence analysis was conducted using a 

statistical package - Canoco 4.5 for Windows v. (ter Braak & Smilauer, 2002) and 

STATISTICA v. 9 (StatSoft). 

 

 

Results 



Environmental factors  

Mean values of physico-chemical parameters of investigated surface ice samples are 

presented in Table 1, the complete data are presented in Table S2, Supplementary Materials. 

Surface ice total organic carbon (TOC) levels varied slightly in both glaciers with a higher 

mean value in Hans Glacier. At Hans Glacier the amount ranged from 0.97 mg L-1 (HI3) to 

5.45 mg L-1 (HI2), and in Werenskiold Glacier from 0.92 mg L-1 (WI3) to 2.90 mg L-1 (WI5). 

In majority of samples TOC was composed of dissolved carbon. Total nitrogen amounts 

measured in ice samples were at their highest in points nearest the snow line in both Hans and 

Werenskiold Glaciers (0.40 mg L-1 and 0.30 mg L-1 respectively). Organic nitrogen dominated 

in all samples. Inorganic nitrogen fraction was composed mainly of nitrates. Total phosphorus 

in Hans Glaciers ice samples exhibited highest values at glaciers terminus (HI1 – 0.249 mg L-

1) and lowest at the snow line area (HI5 – 0.050 mg L-1). At Werenskiold Glacier highest and 

lowest total phosphorus amounts were noted in neighboring areas (WI3 – 0.275 mg L-1; WI2 

– 0.047 mg L-1). Organically bound P fraction dominated in high phosphorus level sites, while 

in low phosphorus sites, organic and inorganic P fraction contributed equally to total P 

contents. The C/N/P ratios for Hans and Werenskiold Glaciers surface ice were 25:2:1 and 

14:1.4:1 respectively. Total chlorophyll concentrations on Werenskiold Glacier showed a 

rising trend with distance from glacier terminus (WI1 – 1.50 µg L-1; WI5 – 8.61 µg L-1) while 

on Hans Glacier no such trend could be observed with highest and lowest chlorophyll 

amounts registered at neighboring sites (HI4 – 7.11 µg L-1; HI3 – 1.59 µg L-1). Total seston 

reached highest values of 561.5 mg L-1 at Hans Glaciers lowest site (HI1), whereas on 

Werenskiold Glacier the highest site was most abundant in particulates (WI5 – 283.0 mg L-1). 

Seston was composed mostly of organic material. Noteworthy are the elevated SUVA 

measurements on Werenskiold Glacier, twice as high as on Hans Glacier surface. Mean cation 

(Na+, K+, Ca2+, Mg2+) and anion (Cl- , SO4
2 -) amounts for Hans Glacier surface ice were as 

follows: 1.40 mg L-1, 0.27 mg L-1, 2.93 mg L-1, 0.27 mg L-1, 0.80 mg L-1 and 0.23 mg L-1 

respectively. Analogous Werenskiold Glacier samples displayed following concentrations of 

the respective ions (1.22 mg L-1, 0.28 mg L-1, 3.46 mg L-1, 0.25 mg L-1, 0.49 mg L-1, 0.11 mg 

L-1). 

Mean values of physico-chemical parameters of investigated cryoconite samples are presented 

in Table 1, the complete data are presented in Table S3, Supplementary Materials. Mean total 

organic carbon amounts were higher in cryoconite samples from Hans Glacier (42.11 mg L-1 

(mean 20.96) vs. 12.51 mg L-1 (mean 8.06) on Werenskiold Glacier). Lowest TOC 

concentrations were noted in cryoconite holes nearest the snow line on both glaciers (HC5 – 

10.77 mg L-1 ; WC5 – 4.95 mg L-1 ). It was mainly composed of the dissolved fraction (HC 

mean – 15.11 mg L-1, WC mean – 7.45 mg L-1). Total nitrogen amounts were much higher on 

Hans Glacier, reaching 7.57 mg L-1 (1.41 mg L-1 on Werenskiold Glacier) with the majority of 

it being bound to organic matter. Phosphates were found in concentration up to 0.36 mg L-1 

on Hans Glacier (HC4) and 0.96 mg L-1 on Werenskiold Glacier (WC1). High fluctuations of 

total chlorophyll levels were found in cryoconite holes of Hans Glacier (20.3 – 247.0 µg L-1), 

less so on Werenskiold Glacier (14.5 – 28.6 µg L-1 ). Mean cation (Na+, K+, Ca2+, Mg2+) and 

anion (Cl- , SO4
2 -) amounts for Hans Glacier cryoconite holes were as follows: 2.97 mg L-1, 



1.65 mg L-1, 3.69 mg L-1, 0.80 mg L-1, 1.53 mg L-1 and 0.71 mg L-1 respectively. Analogous 

Werenskiold Glacier samples displayed following concentrations of the respective ions (1.99 

mg L-1, 0.94 mg L-1, 3.30 mg L-1, 0.33 mg L-1, 1.22 mg L-1, 0.74 mg L-1). The majority of the 

mean nutrient concentrations were higher in Hans Glacier cryoconite holes, with the 

exception of phosphates, nitrates and SUVA measurements.  

 

Microbial abundance and diversity  

Mean values of biological parameters of investigated surface ice samples are presented in 

Table 2, the complete data are presented in Table S4, Supplementary Materials. Total 

microbial counts (TC) were rather stable along the transect on Hans Glacier, exhibiting 

maximum values of 7.33 x 104 mL-1 at point HI5, nearest the snow line. TC on Werenskiold 

Glacier displayed higher values, up to 29.2 x 105 mL-1 in point WI5. Dividing cell count (DC) 

was approx. 10 fold lower than the TC measurements. The DC/TC (%) ratio displayed lowest 

values in the middle of the ablation zone on both Glaciers (HI3 – 5.71; WI3 – 7.13). The ratio 

increased on Werenskiold Glacier towards the terminus. Photoautotrophic count (PHAC) 

displayed highest values at the verge of the snow line at both glaciers (2.79 x 103 mL-1 – HI5; 

8.44 x 103 mL-1 – WI5) although the PHAC/TC ratio coincided with those numbers only on 

Hans Glacier, whereas on Werenskiold Glacier it was the highest at the glacier terminus 

(WI1). Cyanobacteria dominated the supraglacial photoautotrophic communities, however 

photosynthetic Eukaryotes were more numerous at the lowest point of the Hans Glacier and 

the highest point of the Werenskiold Glacier transects. The banding patterns of DGGE 

revealed dominant bacterial taxa. Band numbers increased at the Hans Glaciers terminus (17 

OTU’s at HI1), on Werenskiold Glacier showed highest values (15 OTU’s) at the middle 

point of the transect (WI3) and near the snow line (WI5). Few responses from the surface ice 

communities were obtained on the Biolog EcoPlates, with highest values at Hans Glaciers 

terminus and point W4 at Werenskiold Glacier.  

Mean values of biological parameters of investigated cryoconite samples are presented in 

Table 2, the complete data are presented in Table S5, Supplementary Materials. Total 

microbial counts in cryoconite sediment remained very stable along the Hans Glaciers 

ablation zone, with a maximum of 2.58 x 108 g-1 d.w. TC on Werenskiold Glacier varied 

along the transect, displaying lowest values at both ends of the transect (WC1 – 0.74 x 108 g-1 

d.w.; WC5 – 0.82 x 108 g-1 d.w.). The DC/TC ratio of the cryoconite samples at Hans Glacier 

was the highest near its terminus, on Werenskiold Glacier however this ratio showed maximal 

values at the snow line. Photoautotrophic to total cell count ratio have displayed a similar 

trend on both examined glaciers, with low values near the snow line (HC5 – 0.75%; WC5 – 

0.78%) and highest closer to the terminus (HC2 – 7.39; WC2 – 2.53). Cyanobacteria 

dominated the photoautotrophic community in all cryoconite samples. Taxonomic diversity 

(OTU numbers) increased in samples from both Glaciers towards the terminus. The functional 

diversity (EcoPlate positive responses) showed a similar trend. CFU to TC ratio displayed a 

decreasing trend toward the terminus along Hans Glaciers ablation zone, whereas in 

Werenskiold Glaciers cryoconite holes, it was the highest in the middle of the transect. 



Substrate utilizing abilities of the cryoconite communities were much broader than the ice 

surface ones in both glaciers (Fig. 2). Tetrazolium dye reduction rates were higher in 

cryoconites from Hans Glacier than that of Werenskiold Glacier. In all but one sample type 

(HI) the preferable carbon source were polymers. The second most frequently utilized 

compound group were amino-acids. Pyruvic acid methyl ester, D-cellobiose, β-methyl-d-

glucoside, α-D-lactose, L-asparagine were the most actively metabolized compounds by 

surface ice microbiota of Hans Glacier, whereas on Werenskiold Glacier pyruvic acid methyl 

ester, L-arginine, glycyl-L-glutamic acid, Tween 80 and Tween 40 were preferable. The 

compound utilization pattern was similar for cryoconite communities of both glaciers, with L-

asparagine, Tween 80, L-arginine and α-cyclodextrin as popular carbon sources (data not 

shown). 

Statistics 

Simple regression analysis was conducted between biological and physico – chemical 

parameters in surface ice and in cryoconite samples. Significant correlation (p< 0.05) have 

been displayed in Table S6 (a-d), Supplementary Materials . 

Basic microbial parameters of abundance (TC) and diversity (DGGE, EcoPlate) in Hans 

Glacier surface ice samples (HI), positively correlated with POC, eukaryotic photoautotroph 

contribution, pH and NH4
+ levels. Correlations in Hans Glaciers cryoconite samples (HC) 

included a positive one between Mg2+ amounts and the dividing to total cell ratio (DC/TC) 

and photoautotroph contribution (PHAC/TC). The culturable to total cell ratio (CFU/TC) 

displayed negative correlations microbial abundance and diversity parameters. The 

anticipated correlations with distance from glacier edge included the PHAC/TC ratio (positive 

in surface ice, negative in cryoconite holes), TC (negative in cryoconite holes), the CFU/TC 

ratio (positive in cryoconite holes). In both, the surface ice and the meltholes, the taxonomic 

diversity positively correlated with the functional diversity. 

Higher numbers of statistically significant correlations emerged in Werenskiold Glacier 

samples. Microbial abundance in surface ice samples (WI) correlated positively with distance 

from glacier edge, organic nitrogen and chlorophyll a contents. The PHAC/TC and DC/TC 

ratios displayed similar negative correlations: with distance from glacier terminus, total and 

organic phosphorus contents, chlorophyll a and seston amounts. Taxonomic diversity 

positively correlated with ammonia and iron concentrations. The CFU/TC ratio displayed 

positive correlations with aromatic carbon contents (SUVA) but a negative with the whole 

dissolved fraction (DOC). In cryoconite hole samples (WC) negative correlations prevailed. 

Total and dissolved organic carbon fractions displayed negative correlations with distance 

from glacier terminus and the CFU/TC ratio. This ratio, like in surface ice samples correlated 

positively with the SUVA measurements. Taxonomic diversity displayed a negative 

correlation with PO4
3- concentrations and TC with ammonia amounts. 

The Principal Component Analysis (PCA) of chemical and microbiological parameters shows 

a clear distinction between Hans and Werenskiold Glacier samples (Fig 3). The clustering by 

chemical data shows the samples more homogenous within a group than the clustering by 

microbiological parameters. The spatial design of the sampling transect is reflected in the 



clustering of the samples, but in some cases single points diverge from the group – point WC4 

in the microbiological clustering, sample WC5 and WI4 in chemical parameter clustering. 

The PCA of the dominant bacterial taxa structure based on the relations of OTU’s in the 

denaturating gel reveals, that the bacteriocenoses in surface ice and cryoconite holes differ, 

but also shows differences between glaciers (Fig 4). The surface ice samples from 

Werenskiold Glacier form a rather homogenous group, whereas Hans Glacier ice samples are 

more diverse. An opposite situation can be observed with cryoconite hole samples, with the 

Hans Glacier points forming a very tight cluster.  

 

Discussion 

Microbial communities and their development on two Arctic glaciers were compared. Surface 

ice and cryoconite holes were examined in terms of chemical composition, microbial 

abundance and diversity. Gathered data served to describe supraglacial habitats on ablation 

zones of Hans and Werenskiold Glaciers and to compare microbe-environment interactions on 

those different type glaciers.  

Data comparison and nutrient sources 

DOC levels in surface ice of Hans and Werenskiold Glaciers were in line with the findings of 

Zarsky et al. (2007) for Aldegonda Glacier and Stibal et al. (2008) for Werenskiold glacier. 

Both of these authors attribute the present organic carbon to allochtonic inputs. Hans Glacier 

surface displayed elevated TOC, DOC and seston levels compared to Werenskiold Glacier, 

hinting that the source and intensity of allochtonic carbon supply may be different for each of 

the glaciers. Differences between the glaciers that were only slight in surface ice samples 

were more pronounced in cryoconite samples. Organic carbon, ammonia and organic nitrogen 

levels were much higher in Hans Glacier cryoconite holes. This suggest yet again a different 

nutrient source. The parameters of both glaciers were also much higher than those reported 

from McMurdo valley glaciers (Porazinska et al. 2004, Foreman et al. 2007) and previous 

studies on Werenskiold Glacier (Stibal et al. 2008). The elevated concentrations of some 

inorganic ions (Na+, K+, Mg2+, Ca2+) in Hans Glacier cryoconite samples may be attributable 

to marine aerosol influence (McInnes et al. 1996). The cause for such high nutrient levels may 

be found in the glacier-adjacent sites. Hans Glacier lies in the vicinity of little auk and several 

other birds’ breeding sites, rich tundra formations and it terminates in Hornsund fjord (Pulina 

et al. 2003). Tidewater glacier front areas have been recognized as important feeding sites for 

birds and sea mammals due to fresh-salt water mixing induced death of marine plankton 

species (Lydersen et al. 2014). Those sites could be important nutrient sources, as debris in 

form of lichen and moss fragments as well as feathers and pellets have been observed by the 

authors on the ablation zone of Hans Glacier. The allochtonous organic matter source for 

Werenskiold glacier is not so easy to pinpoint. One suggestion could be the vast barren glacial 

forefield, where according to Bardget et al. (2007) ancient carbon can be traced. One of the 

characteristic of this carbon is its high aromatic content, which was predominantly detected  

(SUVA) on surface of Werenskiold Glacier in our study. 



Despite differences in some essential nutrient contents between the surface habitats of those 

glaciers, the microbial numbers are comparable, suggesting that other factors may control cell 

densities, like flushing (Stibal et al. 2008), viral induced mortality (Bellas et al. 2013) or/and 

predatory ciliate grazing (Mieczan et al. 2013). However, some parameters indicate that 

nutrients could exert some changes in the trophic structure of supraglacial communities. 

According to Gasol and Duarte (2000) higher nutrient levels should shift the balance towards 

photoautotroph dominance on the more fertile Hans Glacier. Yet, the PHAC/TC ratio in 

surface ice was considerably higher in Werenskiold Glacier samples. Dodds and Cole (2007) 

point out, that the proposed photoautotroph dominance scenario applies to high-autotrophy 

environments, whereas in low-autotrophy habitats with high allochtonic input, heterotroph 

dominance should be observed.   

The dividing to total cell ratio (DC/TC) was higher in cryoconite holes of Hans Glacier, 

suggesting that the higher nutrient levels are beneficial for cell fission rates. However, the 

experiments of Säwstrom et al. (2007), involving enrichment of cryoconite microbiota in 

essential nutrients did not produce a significant increase in cell doubling rates, which implies 

influence of other factors, including higher cryoconite temperature or even different 

properties on the microbial community itself.   

The PCA clustered the samples according to the bacterial taxonomic structure. It revealed 

that, the bacteriocenoses cluster together within one sample type, which is consistent with the 

observations of Edwards et al. (2011, 2013). The most coherent groups were formed by the 

Hans Glacier cryoconite samples and Werenskiold Glacier surface ice samples. 

Taxonomically similar bacterial communities in different locations are thought to be the effect 

of strong selective factors (Cameron et al. 2012). Given that these habitats represent the 

highest (HC) and the lowest (WI) nutrient levels presented in this study, we assume that this 

could be one of the responsible factors. In comparison to surface ice, cryoconite holes were 

described as microbial refugia on glacier surfaces, protecting the cells from UV radiation, 

flush-out, freezing and other factors. In this respect, harsh physical conditions and low 

nutrient availability could exert enough selective pressure to unify the bacterial community 

across the ablation zone whereas in cryoconite holes of Hans Glacier biotic interactions and 

competition could do the same.   

Supraglacial community development  

Microbial community development in this study involves mainly the response of the 

supraglacial microbes to the passing of the snow line during the ablation period and exposure 

of the ice to allochtonic influences.  

Nutrient and microbial cell supply to the surface ice by the melting snow cover has been 

observed previously (Amato et al. 2007; Telling et al. 2011). As the passing of the snow line 

is a seasonally progressing phenomenon, one can conclude that, the entire ablation zone had 

to be submitted to snow-derived nutritional and microbial augmentation, with sites near 

terminus being the first to experience this event. The gradual reaction of the microbial 

community should therefore be observed towards the glacier terminus. The immediate 

increase in microbial quantity was only observed in the Werenskiold Glacier surface ice 



samples (WI5), whereas in cryoconite samples of this glacier the numbers rose in point WI4, 

indicating a delayed response. The snowmelt had seemingly no effect on the Hans Glacier 

supraglacial microbocenosis.  However, chlorophyll levels in cryoconite holes from point 4 

were suprisingly high, with higher PHAC/TC ratio. This could suggest, that although the 

community as a whole seems unaffected, the photoautotrophs proliferate, producing large 

quantities of  photosynthetic pigments. This is consistent, with the findings of Persson et al. 

(2010), who state, that photoautotrophs are more flexible than heterotrophs in response to 

fluctuations in nutrient levels.  

The PHAC/TC ratio remains a curious issue. In Hans Glacier surface ice this ratio declined 

towards the terminus, which is consistent with the model proposed by Stibal et al. 2012, 

where the glacial margin acts as CO2 source, turning towards net-autotrophy towards snow 

accumulation area. However, in cryoconite holes of Werenskiold Glacier the opposite could 

be observed. Furthemore, the chlorophyll a to pheophytin ratio, as an indicator of “health” 

condition of photoautotrophs (Camacho and de Wit, 2003) also increased in Werenskiold 

Glacier cryoconites towards the terminus. An explanation can be given again by Dodds and 

Cole (2007), if we consider the cryoconite holes as high-autotrophy habitats with high 

allochtonic input. This scenario implies an increase of photoautotrophic activity and 

abundance.  

Siegler and Zeyer (2004) proposed the CFU to total cell count ratio to be the opportunist part 

of the community. The ratio is higher in newly established or frequently disturbed habitats 

(Zdanowski et al. 2013). In this regard the decline of this ratio in cryoconite samples of both 

examined glaciers towards terminus hits, that those communities develop over time, forming 

complex trophic interactions, that cannot be imitated by the agar medium.  

Influencing factors 

Very few correlations have emerged between microbial abundance and other factors. A 

recurring phenomenon were positive correlations between TC and several parameters 

involving photoautotrophs like the PHAC/TC ratio, chlorophyll a content and Eukaryotic or 

Cyanobacterial autotroph percentage. This suggest, that the microbial community depends not 

solemnly on allochtonic nutrients, but also benefits from in situ primary production. 

Investigations of Stibal et al. (2007) on Werenskiold Glacier involving inorganic carbon 

uptake in comparison to total carbon amounts in cryoconite holes, hint that microbial 

photosynthesis is of negligible importance to the supraglacial habitat. However, analysis of 

cryoconite organic matter revealed it to be in large part recalcitrant and low availability 

compounds like long chain n-alkanes and wax esters (Xu et al. 2010). In those conditions 

excretion of low molecular organic molecules like free amino-acids by photoautotrophs 

(Myklestad, 1995) could greatly benefit the microbial community.   

Photoautotrops, especially eukaryotic algae, have in surface samples displayed positive 

correlations with nitrogen levels, pointing to nitrogen limitation in this habitat for non-

nitrogen-fixing primary producers. The C/N/P ratios, that are comparable to the ratios 

published by Stibal et al. 2008 for Werenskiold Glacier at the end of ablation season, also 

point towards nitrogen limitation. Cyanobacteria (presumable nitrogen-fixers) could benefit 



the microbial community in such conditions, yet no positive correlations emerged, hinting that 

nitrogen fixation might be impaired by an undisclosed factor. In the cryoconite holes 

however, cyanobaterial presence greatly improves microbial numbers and diversity, 

suggesting better conditions for this process. The heightened nutrient content may be the 

cause, but also the lower UV radiation intensity (absorbed by the water layer) which was 

postulated by Solheim et al. (2002) to impair nitrogen fixation. High microbial numbers in 

cryoconite hole sediments imply high nitrogen demand and in consequence rapid depletion of 

the snow-derived N-compounds. Therefore, cyanobacterially fixed nitrogen may play a 

crucial role in community development. Telling et al. (2011) demonstrated, that nitrogen 

fixation may cover microbial nitrogen demands when allochtonic sources are scarce.  

An interesting issue emerged in Werenskiold Glacier surface ice samples. The photoautotroph 

part of the community responded negatively to heighten phosphorus, iron and seston contents, 

hinting that a delicate balance exists in this habitat. The PHAC/TC ratio shifts towards the 

heterotrophs in response to allochtonic nutrient supplementation, proving yet again, that 

according to Dodds and Cole (2007), Werenskiold Glacier surface ice can be seen as a low-

autotrophy habitat.  

The CFU/TC ratio as an opportunist contribution indicator displayed several negative 

correlations with seemingly growth essential nutrient concentrations, especially DOC, but 

also with microbial abundance and diversity parameters, proving it to be the indicator of 

stressful conditions for microbes. It displayed positive correlation with the aromaticity content 

of DOC. Aromatic compounds are known as a last resort carbon supply, when other sources 

are depleted, because of their complex biodegradation process and therefore low availability 

to microbial consumers (Kanaly and Harayama, 2000).  

Conclusions 

The presented data let us conclude that different type glaciers (Hans and Werenskiold) 

originating from the same ice cap due differ, especially in nutrient content, but also in 

supraglacial microbial community structure. The reason for those discrepancies may be 

sought in allochtonic inputs of wind and bird delivered materials from adjacent environments. 

Hans Glacier appeared to be under more intense allochtonic enrichment than Werenskiold 

Glacier, probably due to the nature of its surroundings. Although this phenomenon seemed to 

affect the microbial numbers only moderately, it influenced the quality of the microbial 

community, including not only the taxonomic structure, but also the balance between 

heterotrophic and photoautotrophic cell distribution. The communities development after 

snow cover retreat showed, that the allochtonic enrichment on Hans Glacier may overwhelm 

the effect of the melting snow and corrupt the development of the microbial community 

observed on Werenskiold Glacier. Nitrogen emerged as one of the few candidates to affect 

microbial cell densities and diversity, especially in surface ice, where stressful condition 

might have impaired important biochemical processes like nitrogen fixation.  
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Table 1. Differences in chlorophyll and pheophytin concentrations, particulates, pH, carbon (TOC – total 

organic carbon; DOC – dissolved organic carbon; POC – particulate organic carbon), nitrogen, phosphorus and 

other mineral contents in samples used for microbiological analysis. HI – Hans Glacier ice samples (N=5);  WI 

– Werenskiold Glacier ice samples (N=5), HC – Werenskiold Glacier cryoconite samples (N=4);  WC – 

Werenskiold Glacier cryoconite samples (N=5), N/A – not analyzed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples (mean values) HI WI HC WC 

TOC (mg L-1) 2.78 2.00 20.96 8.06 

DOC (mg L-1) 1.76 0.96 15.11 7.45 

POC (mg L-1) 1.01 1.04 5.85 0.62 

SUVA 9.02 18.64 2.33 2.80 

pH 3.47 3.80 4.63 4.51 

NH4-N (mg L-1) 0.00 0.00 0.08 0.01 

NO3-N (mg L-1) 0.01 0.05 0.02 0.05 

Total nitrogen (mg L-1) 0.23 0.20 3.70 1.17 

Organic nitrogen (mg L-1) 0.21 0.14 3.59 1.09 

PO4-P (mg L-1) 0.02 0.03 0.21 0.31 

Total phosphorus (mg L-1) 0.11 0.14 N/A N/A 

Organic phosphorus (mg L-1) 0.08 0.11 N/A N/A 

Na+ (mg L-1) 1.40 1.22 2.97 1.99 

K+ (mg L-1) 0.27 0.28 1.65 0.94 

Ca2+ (mg L-1) 2.93 3.46 3.69 3.30 

Mg2+ (mg L-1) 0.27 0.25 0.80 0.33 

Cl- (mg L-1) 0.80 0.49 1.53 1.22 

SO4
2 -(mg L-1) 0.23 0.11 0.71 0.74 

Total iron (Fe) (mg L-1) 0.02 0.02 N/A N/A 

Chlorophyll  a (µg L-1) 1.84 1.33 45.05 11.68 

Pheophytin (µg L-1) 2.18 2.67 41.45 8.74 

Total chlorophyll (µg L-1) 4.02 4.00 86.48 20.46 

Total seston (mg dry wt. L-1) 200.94 152.18 N/A N/A 

Organic seston (mg dry wt L-1) 193.26 148.28 N/A N/A 

Chlorophyll  a/ Pheophytin 0.76 0.53 1.14 1.7 



Table 2. Differences in microbiological parameters of glacier surface microbes. TC – total microbial count, DC 

– dividing cell count, CFU – colony forming units on R2A agar,  PHAC – photoautotrophic cell count, %Cyan – 

percentage contribution of cyanobacterial cell to photoautotrophic count, %Eucar - percentage contribution of 

eukaryotic cell to photoautotrophic count; DGGE – taxonomical diversity of samples given in operational 

taxonomic units (OTU’s), EcoPlate – functional diversity given in positive response numbers on Biolog 

Ecoplates. HI – Hans Glacier ice samples (N=5);  WI – Werenskiold Glacier ice samples (N=5), HC – 

Werenskiold Glacier cryoconite samples (N=4);  WC – Werenskiold Glacier cryoconite samples (N=5), *x 104 

mL-1, ** x 108 g dry weight -1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples (mean values) HI WI HC WC 

TC  6.29* 10.31* 2.41** 2.56** 

DC 0.65* 1.01* 0.39 0.22 

DC/TC (%) 10.35 13.48 16.28 9.34 

PHAC 0.10* 0.38* 0.09** 0.05** 

PHAC/TC (%) 1.53 5.11 3.51 1.69 

%Cyan 68.31 66.30 69.98 66.80 

%Eucar 31.69 33.72 30.02 33.22 

DGGE (OTU) 13.00 12.80 14.00 18.00 

EcoPlate (number of 

positive responses) 
2.20 2.40 19.00 15.40 

CFU 0.37* 0.47* 0.06** 0.14** 

CFU/TC (%) 5.92 6.07 2.86 4.71 



 

 

Fig. 1. Location of sampling points on Hans and Werenskiold Glacier surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 2. Well color development calculated from Omnilog Arbitrary Unit values of substrate utilization on 

Biolog EcoPlates by glacial microbial communities. Substrates were divided into five categories: carbohydrates 

(n=10), polymers (n=4), carboxylic and acetic acids (n=9), amino acids (n=6), amines/amides (n=2). HI – Hans 

Glacier surface ice samples (n=5), WI – Werenskiold Glacier surface ice samples (n=5), HC – Hans Glacier 

cryoconite samples (n=4), WC – Hans Glacier cryoconite samples (n=5). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 3. Principal component analysis clustering of sampling points basen on physico-chemical (b, d) and 

microbiological data (a, c). WI – Werenskiold Glacier surface ice samples, HC – Hans Glacier cryoconite 

samples, WC – Hans Glacier cryoconite samples. 

 

 

 

 

 

 

 

 

 



Fig. 4. Principal component analysis of bacterial taxonomic structure (based on OTUs relations) in surface ice 

(black squares) and cryoconite samples (circles). HI – Hans Glacier surface ice samples, WI – Werenskiold 

Glacier surface ice samples, HC – Hans Glacier cryoconite samples, WC – Hans Glacier cryoconite samples, 1-

35 – DGGE band numbers. 

 

 

 

 

 

 



 

Table S1. Locations of the sampling points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling points HI1 HI2/HC2 HI3/HC3 HI4/HC4 HI5/HC5 WI1/WC1 WI2/WC2 WI3/WC3 WI4/WC4 WI5/WC5 

Longitude (E) 15°35'55.0 15°39'27.8 15°39'11.3 15°38'10.9 15°37'54.9 15°15'33.4 15°17'23.3 15°19'29.7 77°04'14.3 15°23'30.5 

Latitude (N) 77°01'04.2 77°01'33.2 77°02'10.9 77°02'48.6 77°03'47.6 77°04'34.4 77°04'32.8 77°04'24.5 15°21'22.7 77°04'05.4 



 

 

Table S2. Differences in chlorophyll and pheophytin concentrations, particulates, pH, carbon (TOC – total organic carbon; DOC – dissolved organic carbon; POC 

– particulate organic carbon), nitrogen, phosphorus and other mineral contents in samples used for microbiological analysis. HI1-HI5 – Hans Glacier ice samples;  

WI1-WI5 – Werenskiold Glacier ice samples. 

 

 

Sampling points HI1 HI2 HI3 HI4 HI5 Mean WI1 WI2 WI3 WI4 WI5 Mean 

TOC (mg L-1) 2.562 5.452 0.971 1.476 3.417 2.78 2.819 1.383 0.927 1.991 2.903 2.00 

DOC (mg L-1) 1.666 4.099 0.654 1.063 1.329 1.76 1.055 0.829 0.534 0.528 1.867 0.96 

POC (mg L-1) 0.896 1.353 0.317 0.413 2.088 1.01 1.764 0.554 0.393 1.463 1.036 1.04 

SUVA 8.70 3.22 17.13 6.40 9.63 9.02 19.72 16.77 31.27 17.99 7.45 18.64 

pH 3.61 3.48 3.43 3.34 3.51 3.47 4.21 3.86 3.39 3.82 3.70 3.80 

NH4-N (mg L-1) 0.002 0.000 0.001 0.000 0.001 0.00 0.000 0.000 0.001 0.000 0.000 0.00 

NO3-N (mg L-1) 0.009 0.010 0.003 0.024 0.027 0.01 0.118 0.027 0.017 0.087 0.013 0.05 

Total nitrogen (mg L-1) 0.317 0.140 0.106 0.182 0.404 0.23 0.282 0.106 0.109 0.184 0.304 0.20 

Organic nitrogen (mg L-1) 0.305 0.128 0.098 0.132 0.376 0.21 0.162 0.076 0.084 0.082 0.284 0.14 

PO4-P (mg L-1) 0.022 0.019 0.022 0.021 0.028 0.02 0.025 0.021 0.038 0.024 0.024 0.03 

Total phosphorus (mg L-1) 0.249 0.074 0.053 0.104 0.050 0.11 0.065 0.047 0.275 0.122 0.168 0.14 

Organic phosphorus (mg L-1) 0.227 0.054 0.031 0.082 0.023 0.08 0.040 0.026 0.237 0.098 0.144 0.11 

Na+ (mg L-1) 1.32 1.29 1.18 1.32 1.91 1.40 1.28 0.97 1.06 0.96 1.83 1.22 

K+ (mg L-1) 0.25 0.34 0.21 0.25 0.30 0.27 0.31 0.19 0.27 0.15 0.50 0.28 

Ca2+ (mg L-1) 2.00 2.61 4.06 3.39 2.60 2.93 3.69 2.51 4.11 3.75 3.22 3.46 

Mg2+ (mg L-1) 0.35 0.20 0.26 0.19 0.37 0.27 0.27 0.17 0.27 0.23 0.32 0.25 

Cl- (mg L-1) 0.42 0.69 0.24 0.95 1.71 0.80 0.75 0.55 0.31 0.25 0.60 0.49 

SO4
2 -(mg L-1) 0.37 0.18 0.11 0.11 0.40 0.23 0.22 0.04 0.10 0.12 0.07 0.11 

Total iron (Fe) (mg L-1) 0.029 0.017 0.022 0.022 0.020 0.02 0.013 0.019 0.033 0.020 0.023 0.02 

Chlorophyll  a (µg L-1) 1.74 0.53 0.53 3.61 2.81 1.84 0.27 0.67 1.43 1.60 2.67 1.33 

Pheophytin (µg L-1) 2.29 1.62 1.06 3.50 2.43 2.18 1.23 1.30 1.44 3.45 5.93 2.67 

Total chlorophyll (µg L-1) 4.02 2.15 1.59 7.11 5.24 4.02 1.50 1.96 2.87 5.05 8.61 4.00 

Total seston (mg dry wt. L-1) 561.5 82.3 97.8 166.8 96.3 200.94 49.3 38.3 213.3 177.0 283.0 152.18 

Organic seston (mg dry wt L-1) 551.1 78.4 92.5 154.5 89.8 193.26 46.6 36.1 207.0 173.3 278.4 148.28 

Chlorophyll  a/ Pheophytin 0.76 0.33 0.50 1.03 1.16 0.76 0.22 0.52 0.99 0.46 0.45 0.53 



 

Table S3. Differences in chlorophyll and pheophytin concentrations, particulates, pH, carbon (TOC – total organic carbon; DOC – dissolved organic carbon; POC 

– particulate organic carbon), nitrogen, phosphorus and other mineral contents in samples used for microbiological analysis. HC2-HC5 – Hans Glacier cryoconite 

samples;  WC1-WC5 – Werenskiold Glacier cryoconite samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling points HC2 HC3 HC4 HC5 Mean WC1 WC2 WC3 WC4 WC5 Mean 

TOC (mg L-1) 11.680 19.290 42.110 10.770 20.96 12.510 8.720 6.432 7.696 4.956 8.06 

DOC (mg L-1) 8.742 16.600 27.820 7.275 15.11 11.710 8.216 5.943 6.673 4.697 7.45 

POC (mg L-1) 2.938 2.690 14.290 3.495 5.85 0.800 0.504 0.489 1.023 0.259 0.62 

SUVA 3.24 1.74 1.52 2.80 2.33 1.96 1.73 4.04 3.21 3.04 2.80 

pH 4.77 4.53 4.66 4.57 4.63 4.63 4.70 4.48 4.36 4.39 4.51 

NH4-N (mg L-1) 0.033 0.084 0.174 0.040 0.08 0.012 0.006 0.002 0.004 0.008 0.01 

NO3-N (mg L-1) 0.018 0.038 0.016 0.004 0.02 0.113 0.012 0.035 0.078 0.000 0.05 

Total nitrogen (mg L-1) 1.453 3.399 7.576 2.358 3.70 1.058 1.268 0.960 1.411 1.151 1.17 

Organic nitrogen (mg L-1) 1.399 3.275 7.386 2.312 3.59 0.933 1.250 0.923 1.317 1.002 1.09 

PO4-P (mg L-1) 0.16 0.175 0.36 0.15 0.21 0.955 0.09 0.14 0.08 0.265 0.31 

Na+ (mg L-1) 2.18 2.41 4.26 3.03 2.97 2.14 1.64 1.39 2.35 2.43 1.99 

K+ (mg L-1) 1.15 1.54 2.30 1.60 1.65 1.15 1.03 0.59 0.94 1.01 0.94 

Ca2+ (mg L-1) 4.39 2.91 4.10 3.35 3.69 2.70 2.69 1.88 4.86 4.35 3.30 

Mg2+ (mg L-1) 1.25 0.73 0.76 0.46 0.80 0.38 0.36 0.20 0.40 0.32 0.33 

Cl- (mg L-1) 1.12 1.21 2.35 1.45 1.53 1.01 0.82 0.84 1.84 1.57 1.22 

SO4
2- (mg L-1) 0.78 0.49 0.87 0.68 0.71 0.50 0.42 0.41 0.32 2.04 0.74 

Chlorophyll  a (µg L-1) 9.2 18.7 125.6 26.7 45.05 19.6 10.8 20.0 2.7 5.3 11.68 

Pheophytin (µg L-1) 11.2 14.5 121.4 18.7 41.45 5.3 6.9 8.5 11.8 11.2 8.74 

Total chlorophyll (µg L-1) 20.3 33.2 247.0 45.4 86.48 24.9 17.7 28.6 14.5 16.6 20.46 

Chlorophyll  a/ Pheophytin 0.82 1.29 1.03 1.43 1.14 3.7 1.57 2.53 0.23 0.47 1.7 



 

Table S4. Differences in microbiological parameters of surface ice microbes. TC – total microbial count, DC – dividing cell count, CFU – colony forming units on 

R2A agar,  PHAC – photoautotrophic cell count, %Cyan – percentage contribution of cyanobacterial cells to photoautotrophic count, %Eucar - percentage 

contribution of eukaryotic cells to photoautotrophic count; DGGE – taxonomical diversity of samples given in operational taxonomic units (OTU’s), EcoPlate – 

functional diversity given in positive response numbers on Biolog Ecoplates. HI1-HI5 – Hans Glacier ice samples;  WI1-WI5 – Werenskiold Glacier ice samples. 

 

 

 

 

 

 

 

Sampling points HI1 HI2 HI3 HI4 HI5 Mean WI1 WI2 WI3 WI4 WI5 Mean 

TC (x 104 mL-1) 5.63±0.47 6.88±0.67 5.90±0.49 5.70±0.57 7.33±0.28 6.29 1.99±0.18 3.61±0.14 9.45±0.83 7.30±0.52 29.2±1.22 10.31 

DC (x 103 mL-1) 5.32±0.91 8.91±1.36 3.37±0.83 7.82±0.63 7.28±0.92 6.54 4.45±1.21 7.06±1.78 6.74±1.52 7.06±0.62 25.2±2.65 10.10 

DC/TC (%) 9.46 12.94 5.71 13.71 9.93 10.35 22.40 19.58 7.13 9.67 8.64 13.48 

PHAC (x103 mL-1) 0.20 0.11 0.21 1.69 2.79 1.00 1.53 2.43 2.96 3.70 8.44 3.81 

PHAC/TC (%) 0.37 0.15 0.35 2.97 3.81 1.53 7.71 6.75 3.13 5.07 2.89 5.11 

%Cyan 25.00 100.00 80.00 75.00 61.54 68.31 64.0 58.8 93.8 76.7 38.2 66.30 

%Eucar 75.00 0.00 20.00 25.00 38.46 31.69 36.0 41.2 6.3 23.3 61.8 33.72 

DGGE (OTU) 17 12 13 10 13 13.00 11 12 15 11 15 12.80 

EcoPlate (number of 

positive responses) 
5 1 1 1 3 2.20 0 2 2 5 3 2.40 

CFU (x 103 mL-1) 2.29 4.62 1.96 4.94 5.01 3.76 1.48 1.80 7.72 5.33 7.20 4.71 

CFU/TC (%) 4.07 6.71 3.32 8.66 6.83 5.92 7.44 4.99 8.17 7.30 2.47 6.07 



 

Table S5. Differences in microbiological parameters of cryoconite microbes. TC – total microbial count, DC – dividing cell count, CFU – colony forming units on 

R2A agar,  PHAC – photoautotrophic cell count, %Cyan – percentage contribution of cyanobacterial cells to photoautotrophic count, %Eucar - percentage 

contribution of eukaryotic cells to photoautotrophic count; DGGE – taxonomical diversity of samples given in operational taxonomic units (OTU’s), EcoPlate – 

functional diversity given in positive response numbers on Biolog Ecoplates. HC2-HC5 – Hans Glacier cryoconite samples;  WC1-WC5 – Werenskiold Glacier 

cryoconite samples. 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling points HC2 HC3 HC4 HC5 Mean WC1 WC2 WC3 WC4 WC5 Mean 

TC (x 108 g d.w. -1) 2.58±0.11 2.46±0.16 2.40±0.29 2.20±0.29 2.41 0.74±0.09 3.39±0.46 3.98±0.41 3.87±0.30 0.82±0.44 2.56 

DC (x 107  g d.w. -1) 5.08±0.71 3.72±0.24 4.17±0.67 2.86±0.71 3.96 0.60±0.13 0.71±0.16 4.81±0.45 4.22±0.18 1.11±0.11 2.29 

DC/TC (%) 19.65 15.11 17.36 13.00 16.28 8.06 2.10 12.10 10.91 13.51 9.34 

PHAC (x 106  g d.w. -1) 19.1 8.43 5.95 1.66 8.79 1.22 8.57 8.17 5.64 0.63 4.85 

PHAC/TC (%) 7.39 3.42 2.48 0.75 3.51 1.64 2.53 2.06 1.46 0.78 1.69 

%Cyan 88.73 73.68 56.41 61.11 69.98 61.8 68.8 72.4 69.5 61.5 66.80 

%Eucar 11.27 26.32 43.59 38.89 30.02 38.2 31.3 27.6 30.5 38.5 33.22 

DGGE (OTU) 15 16 13 12 14.00 19 19 19 16 17 18.00 

EcoPlate (number of positive 

responses) 
25 24 14 13 19.00 20 17 17 18 5 15.40 

CFU (x 106  g d.w -1) 1.42 1.42 8.40 15.0 6.56 0.43 14.3 33.7 17.9 4.63 14.19 

CFU/TC (%) 0.55 0.58 3.50 6.82 2.86 0.58 4.22 8.48 4.63 5.64 4.71 



Table S6a. Correlation coefficients (*p<0.05, **p<0.01) between Hans Glacier surface ice chosen biological 

parameters and non-biological factors. TC – total microbial count, DC/TC – dividing to total cell count ratio, 

PHAC/TC – photoautotrophic cell count to total microbial count ratio, DGGE – taxonomical diversity of 

samples by taxonomic operational units (OTU’s), DISTANCE – distance from glacier edge, POC – particulate 

organic carbon, %Eucar - percentage contribution of eukaryotic cells to photoautotrophic count EcoPlate – 

functional diversity of samples by positive response numbers on Biolog EcoPlates), SUVA – aromaticity 

content of dissolved organic carbon. 

 

 

 

 

 

 

 

 

Table S6b. Correlation coefficients (*p<0.05, **p<0.01) between Hans Glacier cryoconite holes chosen 

biological parameters and non-biological factors. TC – total microbial count, DC/TC – dividing to total cell 

count ratio, PHAC/TC – photoautotrophic cell count to total microbial count ratio, DGGE – taxonomical 

diversity of samples by taxonomic operational units (OTU’s), DISTANCE – distance from glacier edge, 

CFU/TC– colony forming units on R2A agar to total microbial count ratio, %Cyan - percentage contribution of 

cyanobacterial cells to photoautotrophic count, EcoPlate – functional diversity of samples by positive response 

numbers on Biolog EcoPlates. 

 

 

 

 

 

 

 

 

 

 

 

HI samples 
TC DC/TC PHAC/TC %Eucar DGGE EcoPlate 

%Eucar -0.372 -0.259 0.068 1.000 0.745 0.937** 

SUVA -0.265 -0.934** -0.100 0.169 0.220 0.000 

pH 0.152 -0.290 -0.327 0.662 0.958** 0.864* 

NH4-N -0.144 -0.436 -0.072 0.933** 0.934** 0.967** 

NO3-N 0.402 0.558 0.952** 0.071 -0.208 0.054 

Total iron -0.689 -0.304 -0.161 0.925** 0.570 0.781 

DGGE 0.117 -0.491 -0.206 0.745 1.000 0.887* 

DISTANCE 0.588 0.098 0.855* -0.338 -0.341 -0.366 

POC 0.900* 0.187 0.412 0.044 0.427 0.322 

HC 

samples 
TC DC/TC PHAC/TC %Cyan DGGE EcoPlate CFU/TC 

TC 1.000 0.875 0.929* 0.779 0.885* 0.848 -0.947* 

PHAC/TC 0.929* 0.872 1.000 0.908* 0.813 0.828 -0.809 

%Cyan 0.779 0.589 0.908* 1.000 0.852 0.911* -0.739 

DGGE 0.885* 0.558 0.813 0.852 1.000 0.989** -0.963** 

EcoPlate 0.848 0.523 0.828 0.911* 0.989** 1.000 -0.916* 

Mg2+ 0.927* 0.947* 0.982** 0.816 0.726 0.726 -0.767 

DISTANCE -0.993** -0.814 -0.900* -0.779 -0.926* -0.886* 0.978** 



Table S6c. Correlation coefficients (*p<0.05, **p<0.01) between Werenskiold Glacier surface ice chosen 

biological parameters and non-biological factors. TC – total microbial count, DC/TC – dividing to total cell 

count ratio, PHAC/TC – photoautotrophic cell count to total microbial count ratio, DGGE – taxonomical 

diversity of samples by taxonomic operational units (OTU’s), DISTANCE – distance from glacier edge, 

CFU/TC– colony forming units on R2A agar to total microbial count ratio, DOC – dissolved organic carbon, 

%Eucar - percentage contribution of eukaryotic cells to photoautotrophic count, SUVA – aromaticity content of 

dissolved organic carbon. 

 

 

 

 

 

 

 

 

 

 

 

 

Table S6d. Correlation coefficients (*p<0.05, **p<0.01) between Werenskiold Glacier cryoconite holes chosen 

biological parameters and non-biological factors. TC – total microbial count, PHAC/TC – photoautotrophic cell 

count to total microbial count ratio, DGGE – taxonomical diversity of samples by taxonomic operational units 

(OTU’s), DISTANCE – distance from glacier edge, CFU/TC– colony forming units on R2A agar to total 

microbial count ratio, %Cyan - percentage contribution of cyanobacterial cells to photoautotrophic count, DOC 

– dissolved organic carbon, TOC – total organic carbon, SUVA – aromaticity content of dissolved organic 

carbon. 

 

 

 

 

 

 

 

WI samples TC PHAC/TC CFU/TC %Eucar DGGE 

TC 1.000 -0.776 -0.757 0.811* 0.579 

DC/TC -0.619 0.949** 0.078 -0.092 -0.612 

CFU/TC -0.757 0.280 1.000 -0.877* -0.287 

%Eucar 0.811* -0.264 -0.877* 1.000 0.105 

DOC 0.781 -0.237 -0.855* 0.959** 0.240 

SUVA -0.580 -0.005 0.872* -0.902* 0.189 

pH -0.417 0.868* 0.008 0.181 -0.847* 

NH4-N 0.439 -0.617 -0.362 0.042 0.941** 

NO3-N -0.573 0.703 0.514 -0.179 -0.891* 

Organic nitrogen 0.816* -0.332 -0.730 0.938** 0.238 

Total phosphorus 0.429 -0.865* 0.181 -0.146 0.781 

Total iron 0.346 -0.829* 0.101 -0.258 0.867* 

Chlorophyll a 0.926** -0.884* -0.58 0.616 0.537 

Total seston 0.852* -0.955** -0.333 0.439 0.621 

DISTANCE 0.820* -0.829* -0.506 0.517 0.403 

WC 

samples 
TC CFU/TC %Cyan DGGE DISTANCE 

TC 1.000 0.574 0.972** 0.741 0,090 

PHAC/TC 0.601 0.047 0.570 0.571 -0,653 

%Cyan 0.972** 0.502 1.000 0.597 0,000 

DOC -0.309 -0.850* -0.191 -0.553 -0,913* 

TOC -0,265 -0,853* -0,136 -0,567 -0,893* 

SUVA 0.402 0.819* 0.456 0.319 0,605 

NH4-N -0.887* -0.870* -0.832* -0.804 -0,470 

PO4-P -0.749 -0.764 -0.599 -0.832* -0,616 


