IBB PAS Repository

Proteasomal Degradation of Proteins is Important for the Proper Transcriptional Response to Sulfur Deficiency Conditions in Plants

Wawrzyńska, Anna and Sirko, Agnieszka (2020) Proteasomal Degradation of Proteins is Important for the Proper Transcriptional Response to Sulfur Deficiency Conditions in Plants. Plant Cell Physiology, 61 (9). pp. 1548-1564. ISSN 1471-9053

[img]
Preview
PDF (open access)
1MB

Official URL: https://academic.oup.com/pcp/article/61/9/1548/585...

Abstract

Plants are continuously exposed to different abiotic and biotic stresses; therefore, to protect themselves they depend on the fast reprogramming of large gene repertoires to prioritize the expression of a given stress-induced gene set over normal cellular household genes. The activity of the proteasome, a large proteolytic complex that degrades proteins, is vital to coordinate the expression of such genes. Proteins are labeled for degradation by the action of E3 ligases that site-specifically alter their substrates by adding chains of ubiquitin. Recent publications have revealed an extensive role of ubiquitination in nutrients utilization. This study presents the transcriptomic profiles of sulfur-deficient rosettes and roots of Arabidopsis thaliana rpt2a mutant with proteasomal malfunction. We found that genes connected with sulfur metabolism are regulated to the lesser extent in rpt2a mutant while genes encoding tRNAs and snoRNAs are highly upregulated. Several genes encoding E3 ligases are specifically regulated by sulfur deficiency. Furthermore, we show that a key transcription factor of sulfur deficiency response, SLIM1, undergoes proteasomal degradation and is able to interact with F-box protein, EBF1.

Item Type:Article
Subjects:Q Science > Q Science (General)
Divisions:Department of Plant Biochemistry
ID Code:1925
Deposited By: Dr AK Wawrzyńska
Deposited On:28 Sep 2020 11:51
Last Modified:28 Sep 2020 11:51

Repository Staff Only: item control page